老师会根据课本中的主要教学内容整理成教案课件,需要我们认真写好每一份教案课件。 良好的教案和课件能够促进教学内容的深入学习。我们今天要分享的是一篇关于“高中数学课件”的文章,希望阅读此文可以拓展您的思维!此外,关于范文大全,您还可以浏览大学中自我鉴定13篇。
高中数学课件 篇1
高中数学教学设计
《等比数列的前n项和(第一课时)》
淮口中学 沈友胜
等比数列的前n项和
(第一课时)
一. 教材分析。
(1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5)》(人教a版)第二章第5节第一课时,是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。
二.学情分析。
(1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
(2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势
利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:
(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的 简洁美。
四.重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析.培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话: 还课堂以生命力,还学生以活力。
六.课堂设计
(一)创设情境,提出问题。(时间设定:3分钟)
[利用投影展示] 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]
提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
2363引导学生写出麦粒总数1?2?2?2???2
(二)师生互动,探究问题[5分钟]
提出问题2:1+2+22+23+??+263究竟等于多少呢?
有学生会说:用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。)
提出问题3:同学们,我们来分析一下这个和式有什么特征?(学生会发现,后一项都是前一项的2倍)
提出问题4:如果我们把每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到另一式:
[[利用投影展示]
...s64?1?2?2?2???2.........(1)
2s64?2?2?2?2???2234642363.......(2)
比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)
提出问题5
:将两式相减,相同的项就消去了,得到什么呢?。(学
生会发现:s
?2
?1
[这五个问题的设计意图:层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之苦后,突然发现上述解法,也让学生感受到这种方法的神奇] 这时,老师向同学们介绍错位相减法,并
提出问题6:同学们反思一下我们错位相减法求此题的过程,为什 么(1)式两边要同乘以2呢?
[这个问题的设计意图:让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺垫]
(三)类比联想,解决问题。[时间设定:10分钟] 提出问题7:设等比数列?a?的首项为a
n
,公比为q,求它的前项和sn
即 sn?a1?a2?a3???a
n
学生开展合作学习,讨论交流,老师巡视课
堂,发现有典型解法的,叫同学板书在黑板上。
[设计意图:从特殊到一般,从模仿到创新,有利于学生的知识迁移和
能力提高,让学生在探索过程中,充分感受到成功的情感体验]
(四)分析比较,开拓思维。[时间设定:5分钟]
种方法:
可能也有同学会想到由等比定理得
sn?a1?a2?a3???an?a2a1
?a3a2
???
anan?1
?q
?
a2?a3???ana1?a2???an?1
sn?a1sn?an
?q
?q
即
?(1?q)sn?a1?anq??
【设计意图:共享学习成果,开拓了思维,感受数学的奇异美】(五).归纳提炼,构建新知。[时间设定:3分钟]
提出问题8:由(1-q)sn=a1-a1qn得sn=于1?等比数列中的公比能不能为1?q
a1-a1q1-q
n
对不对?这里的q能不能等
?
?1时是什么数列?此时sn?
【设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,增强思维的严谨性】
.
提出问题9:等比数列的前n项和公式怎样?
n
?a1(1?q)?a1?anq
,q?1,q?1??
1?q?sn??学生归纳出sn??1?q
??na1,q?1?na1,q?1?
【设计意图:向学生渗透分类讨论数学思想,加深对公式特征的了解】
(六)层层深入,掌握新知。[时间设定:15分钟]
基础练习1已知?an?是等比数列,公比为q(1)若a1=
23,q=
,则sn?
(2).则a1?2,q?1,则sn?练习2 判断是非
(1).1-2+4-8+16-?+?-2??
n
n
1?(1?2)1?(?2)
n
n
(2).1?2?2?2???2?(3).a?a?a???a?
1?(1?2)1?2
a(1?a)1?a
【设计意图:通过两道简单题来剖析公式中的基本量.进行正反两方面的“短、浅、快” 练习.通过总结、辨析和反思,强化公式的结构特征.】
例1 已知数列?an?是等比数列,完成下表
【设计意图:渗透方程思想.通过公式的正用和逆用进一步提高学生运用知识的能力.掌握公式中”知三求二”的题型】 练习3:求等比数列1,1,11 变式
1、等比数列11,11 变式
2、等比数列***
, ???前
8项和;
6364
, ???前多少项的和是;
, ???求第5项到第10项的和;
23n
???a,?求前2n项中所有偶数项的和。变式
3、等比数列a,a,a,(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生
完成情况,寻找学生中的闪光点,给予热情表扬。)
【设计意图:变式训练,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想】.
练习4 有一位大学生毕业后到一家私营企业去工作,试用期过后,老板对这位大学生很欣赏,有意留下他,就让这位大学生提出待遇方面的要求,这位学生提出了两种方案让老板选择,其一:工作一年,月薪五千元;其二:工作一年,第一个月的工资为20元,以后每个月的工资是上月工资的2倍,此时,老板不假思索就选择了第二种方案,于是他们之间就订了一个劳动待遇合同。请你分析一下,老板的选择是否正确?
【设计意图:让学生进一步认识到数学来源于生活并应用于生活,生活中处处有数学.】
(七)总结归纳,加深理解。[时间设定:2分钟]
(1)等比数列的求和公式是什么?应用时要注意什么?(2)用什么方法可以推导了等比数列的求和公式?
【设计意图:形成知识模块,从知识的归纳延伸到思想方法的提炼,优化学生的认知结构】
(八)课后作业,巩固提高。[时间设定:1分钟] 必做:(1)p66练习1
研究性作业:请上网查阅“芝诺悖论” 选做:求和:1?2?2?2
?3?2?4?2???n?2
34n
【设计意图:为了使所有学生巩固所学知识,布置了“必做题”;“选做题”又为学有余力者留有自由发展的空间,布置了“探究题”以利
于学生开展研究性学习,拓展学生的视野.】
七、教学反思:
本节课立足课本,着力挖掘,设计合理,层次分明。充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,引导学生发现数学的美,体验求知的乐趣。
2008.11.
高中数学课件 篇2
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。
教学重点和难点
重点:四种命题之间的关系;
难点:反证法的运用。
教学过程设计
一、导入新课
【练习】
1、把下列命题改写成“若p则q”的形式:
(1)同位角相等,两直线平行;
(2)正方形的四条边相等。
2、什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题。
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。
值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。
3、原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等。
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础。
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。
【板书】原命题:若p则q;
否命题:若┐p则q┐。
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。
由此可以得原命题真,它的否命题不一定真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的`真假,调动学生学习的积极性。
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题。
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。
原命题是“若p则q”,则逆否命题为“若┐q则┐p。
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真。
原命题真,逆否命题也真。
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】
1、原命题为真,它的逆命题不一定为真。
2、原命题为真,它的否命题不一定为真。
3、原命题为真,它的逆否命题一定为真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。
教师活动总结。
PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。
3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。
4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM平面bcd。
变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)
变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef
高中数学课件 篇3
数列-数学教案
教学目标
1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.
(2)了解数列的各种表示方法,理解通项公式是数列第 项 与项数 的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.
(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过由 求 的过程,培养学生严谨的科学态度及良好的思维习惯.
教学建议
(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.
(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.
(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.
(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用 来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.
(5)对每个数列都有求和问题,所以在本节课应补充数列前 项和的概念,用 表示 的问题是重点问题,可先提出一个具体问题让学生分析 与 的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调 的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.
(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.
教学设计示例
数列的概念
教学目标
1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.
2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.
3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.
教学重点,难点
教学重点是数列的定义的归纳与认识;教学难点是数列与函数的联系与区别.
教学用具:电脑,/>课件(媒体资料),投影仪,幻灯片
教学方法:讲授法为主
教学过程
一.揭示课题
今天开始我们研究一个新课题.
先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数
(板书)象这样排好队的数就是我们的研究对象——数列.
(板书)第三章 数列
(一)数列的概念
二.讲解新课
要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:
(幻灯片)①
自然数排成一列数:
②
3个1排成一列:
③
无数个1排成一列:
④的不足近似值,分别近似到 排列起来:
⑤
正整数 的倒数排成一列数:
⑥
函数 当 依次取 时得到一列数:
⑦
函数 当 依次取 时得到一列数:(wWw.Dm566.Com 66职场网)
⑧
请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.
(板书)1.数列的定义:按一定次序排成的一列数叫做数列.
为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述八个数列为例,让学生练指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.
由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,??,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.
(板书)2.数列与函数的关系
数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集,或是正整数集 的有限子集 .
于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列.
遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.
(板书)3.数列的表示法
数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用 表示第一项,??,用 表示第 项,依次写出成为
(板书)(1)列举法
.(如幻灯片上的例子)简记为 .
一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.
(板书)(2)图示法
启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.
有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即,这个函数式叫做数列的通项公式.
(板书)(3)通项公式法
如数列 的通项公式为 ;的通项公式为 ;的通项公式为 ;
数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.
高中数学课件 篇4
高中数学《等差数列》试讲答辩
为帮助各位考生备战教师资格面试,中公教师网整理了各学科教师资格面试试讲答辩语音示范,以下是高中数学《等差数列》试讲答辩,希望对各位考生有所帮助!【面试备课纸】
3.基本要求: (1)要有板书;(2)试讲十分钟左右;(3)条理清晰,重点突出;
(4)学生掌握等差数列的特点与性质。【教学设计】
一、教学目标 【知识与技能】能够复述等差数列的概念,能够学会等差数列的通项公式的推导过程及蕴含的数学思想。
【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,提高知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。
【情感态度与价值观】通过对等差数列的研究,具备主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
二、教学重难点 【教学重点】
等差数列的概念、等差数列的通项公式的推导过程及应用。【教学难点】
等差数列通项公式的推导。
三、教学过程 环节一:导入新课 教师PPT展示几道题目:
1.我们经常这样数数,从0开始,每隔5一个数,可以得到数列:0,5,15,20,25 2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92。
年,在澳大利亚悉尼举行的奥运会上,女子举重正式列为比赛项目,该项目共设置了7个级别,其中交情的4个级别体重组成数列(单位:kg):48,53,58,63。
教师提问学生这几组数有什么特点?学生回答从第二项开始,每一项与前一项的差都等于一个常数,教师引出等差数列。
环节二:探索新知 1.等差数列的概念
学生阅读教材,同桌讨论,类比等比数列总结出等差数列的概念
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
问题1:等差数列的概念中,我们应该注意哪些细节呢?
环节三:课堂练习
抢答:下列数列是否为等差数列?(1)1,2,4,6,8,10,12,……(2)0,1,2,3,4,5,6,……(3)3,3,3,3,3,3,3,……(4)-8,-6,-4,-2,0,2,4,……(5)3,0,-3,-6,-9,…… 环节四:小结作业
小结:1.等差数列的概念及数学表达式。
关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。
高中数学课件 篇5
前言
为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。
在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。
不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!
1、集合与函数概念实习作业
一、教学内容分析
《普通高中课程标准实验教科书·数学(第整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
二、学生学习情况分析
该内容在《普通高中课程标准实验教科书·数学(第,选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。
三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
四、教学目标
发展的历史以及在这个过程中起重大作用的历史事件和人物;
2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;
社会实践技能和民主价值观。
五、教学重点和难点
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计
【课堂准备】
1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。
编辑推荐
高中数学必修二课件集合
高中数学必修二课件【篇1】
1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的
3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行
如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
设是上的 两点,P是上_________的任意一点,则存在实数,使_______________,则为点P分有向线段所成的比,同时,称P为有向线段的定比分点
(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是,|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ
1、给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c
2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____
3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为_____
5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )
、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )
(A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+1
7、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为( )
(A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5
8、设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则 PQ=_________
9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长
10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )
11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )
(A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|
(C)(a·b)·c-(b·c)·a与b垂直 (D)(a·b)·c-(b·c)·a=0
12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )
16、利用向量证明:△ABC中,M为BC的中点,则 AB2+AC2=2(AM2+MB2)
17、在三角形ABC中, =(2,3), =(1,k),且三角形ABC的一个内角为直角,求实数k的值
18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量
高中数学必修二课件【篇2】
教学目标
1.掌握等比数列前项和公式,并能运用公式解决简单的问题.
(1)理解公式的推导过程,体会转化的思想;
(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;
2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.
教学建议
教材分析
(1)知识结构
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.
(2)重点、难点分析
教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.
教学建议
(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.
(4)编拟例题时要全面,不要忽略的情况.
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.
(6)补充可以化为等差数列、等比数列的数列求和问题.
教学设计示例
课题:等比数列前项和的公式
教学目标
(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.
教学重点,难点
教学重点是公式的推导及运用,难点是公式推导的思路.
教学用具
幻灯片,课件,电脑.
教学方法
引导发现法.
教学过程
一、新课引入:
(问题见教材第129页)提出问题:(幻灯片)
二、新课讲解:
记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.
(板书)即,①
,②
②-①得即.
由此对于一般的等比数列,其前项和,如何化简?
(板书)等比数列前项和公式
仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即
(板书)③两端同乘以,得
④,
③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)
当时,由③可得(不必导出④,但当时设想不到)
当时,由⑤得.
于是
反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.
(板书)例题:求和:.
设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.
解:,
两端同乘以,得,
两式相减得
于是.
说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.
公式其它应用问题注意对公比的分类讨论即可.
三、小结:
1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;
2.用错位相减法求一些数列的前项和.
四、作业:略
高中数学必修二课件【篇3】
专题八当今世界经济的全球化趋势
通史概要:
当今世界经济发展有两个明显的趋势:一是世界经济区域集团化,二是世界经济全球化。世界经济区域集团化是最终实现经济全球化的重要步骤和途径,经济全球化则是区域经济集团化的最终归宿。
世界经济区域集团化是生产力高度发展的必然产物,是生产国家化、国际分工向纵深发展需要加强合作的结果,也是世界经济竞争激烈的表现。它产生的原因有:现代科技的发展、国际间经济竞争和客观上存在的分工。区域集团化的发展分为三个阶段:第一阶段为五六十年代,世界经济集团化的趋势主要出现在欧洲,如欧洲煤炭共同体的出现。第二阶段为六七十年代,区域集团化成为一种世界经济现象。欧洲区域集团化趋势进一步发展,如欧共体的建立;一些发展中国家的地区性经济集团也纷纷出现,如东盟的出现。第三阶段为80年代至今,区域集团化掀起新的浪潮,进入了较高层次的经济一体化时期,出现了欧盟、北美自由贸易区和亚太经合组织三大区域经济集团。
世界经济全球化是世界生产力发展的要求和结果,是不以人的意志为转移的历史趋势。它突出的表现在国际贸易、国际投资、国际金融和跨国公司的发展。经济全球化的过程中的问题是:在经济全球化的过程中,不可避免地把资本主义固有的矛盾扩展到全球,造成南北矛盾、贫富分化、环境问题、能源危机、全球性的经济金融危机、恐怖组织活动猖獗等等,直接影响到人类的生存与发展。
我国在当今世界经济发展趋势中,作为发展中国家,应该如何面对机遇和挑战,成了新时期经济发展人们共同关心的话题。从中国加入亚太经合组织、加入世界贸易组织,加强同东盟的联系的史实中,我们的态度是:在坚持独立自主、自力更生的前提下,拥有“双赢”的思维,抱着开放的心态,加强国际的合作与交流,参与国际竞争,抓住机遇,接受挑战,在国际的竞争和合作中,提高我国的经济发展水平,跟随世界发展的潮流。概括而言,就是辩证地看待世界经济发展趋势这一经济现象,树立正确的.发展观。
课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。
教学目标:
(1)知识与能力:分析第二次世界大战后西欧经济进入“黄金时代”的原因;简述欧洲国家从“欧共体”走向欧盟的历程,认识欧洲联盟成立对世界经济和政治格局的影响。
概述欧元产生的影响,培养多角度、多层次理解问题的能力。
(2)过程与方法:通过讨论西欧经济在二战后进入“黄金时代”的共同原因,进一步思考中国的社会主义建设应如何借鉴其合理的方法与正确的经验,学习用联系的方法看待问题,提高理论指导实践的能力;通过分组学习,搜集“欧共体”及“欧盟”成立的资料,了解整个欧洲走向联合的过程,认识当今世界经济区域集团化发展趋势。
(3)情感、态度与价值观:通过对欧洲走向联合这段历史的学习,认识当今国际社会国家间团结协作的重要性,树立国际意识;通过对欧洲走向联合的史实的归纳,得出一个别国家或地区怎样才能快速发展的一般规律;并结合我国的实际,进一步探讨一下我们可以借鉴哪些做法,从而树立为我国社会主义现代化建设而奋斗的责任感。
教学建议:
1、本课共有三个方面的内容,“西欧经济的'黄金时代'”主要讲述:二战后的20世纪50年代到60年代,西欧各国经济在恢复的基础上,进入调整增长期,被称为西欧经济的“黄金时代”;“从'欧共体到'欧洲联盟'”主要是欧洲从经济一体化到政治一体化的发展趋势;“货币王国的世界公民”主要以欧元的流通为例,进一步表明欧洲走向联合的趋势。
2、西欧经济高速发展的共同原因:第一,西欧各国进行社会改革和政策调整。进行社会改革,例如:推行福利制度,适当改善人民的生活条件,缓和社会矛盾,稳定社会秩序;进行政策调整,如:将一些私人垄断企业国有化,并建立有关国计民生的重要工业部门。这些政策的推行,促进了西欧经济的稳定持续高速发展,从而出现前所未有的繁荣。第二,马歇尔计划的实施,解决了西欧战后经济发展的启动资金,西欧重工业在短时期内完成了新的装备,并有能力购买足够的工业原料。第三,战后西欧广泛使用第三次科技革命的成果,并对产业部门进行了改造,使劳动生产率大大提高,从而有力地推动了经济的高速发展。
3、伴随着欧洲经济合作的成功,欧洲经济不断的恢复,要求在国际上发挥更重要的作用。因而要加强在政治领域的合作成为欧洲各国的一致要求。面对二战结束后以美苏为首的两极争霸的冷战格局,欧洲各国迫切要求组成一个更加强大的团体来维护自己的利益。于是在政治领域的合作很快便实施开来。
4、为进一步加强欧洲共同体之间的经济合作与交流,减少共同体内部成员国存在的贸易壁垒,用统一的货币在欧共体各国之间流通,实现经济的联合,从而进一步加强欧洲各国之间的政治合作。
课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。
教学目标:
(1)知识与能力:了解东盟的发展历程,说说中国与东盟的交往情况;分析北美自由贸易区建立的原因和影响,比较北美自由贸易区与欧盟的异同;概述亚太经济合作组织建立的过程,探讨亚太国家加强合作的途径与方式。
(2)过程与方法:通过搜集中国与东盟交往的材料,了解东盟日益扩大及其影响;用列表等方式比较北美自由贸易区与欧盟的异同,学习用比较的方法认识历史问题;通过上网等途径搜集中国参加APEC会议的资料,多渠道去了解和认识APEC建立的史实及影响。
(3)情感、态度与价值观:通过对东盟、北美自由贸易区和亚太经合组织等区域经济一体化进程的学习和了解,体会当今世界国家间加强合作、竞争与发展的重要性,树立合作与竞争的意识。
重点难点:
重点:通过了解欧洲联盟、北美自由贸易区及亚太经济合作组织,认识当今世界经济区域集团化发展趋势。
教学建议:
1、在经济全球化的进程中,亚太地区的经济集团化也在不断深入发展。世界三大区域性经济集团有两个分别在该地区。这一地区成为当今世界上经济发展最活跃地区。课文分别以“东盟”、“北美自由贸易区”和“亚太经全组织”三个经济区域集团为例,介绍了当今世界经济区域集团化发展趋势。每个集团内部有着自身的规则的同时也不断与其它区域集团相联系,从而使世界经济形成了密不可分的一个整体。
2、东南亚国家联盟自1967成立以来,已经历时近三分之一世纪。东盟在维护和促进各成员国相互间的政治和经济合作,实现地区和平稳定,加快成员国经济增长,提高成员国人民生活水平等方面都取得了显著成绩。尤其是在国际政治方面,极大地增强了东盟的国际地位。东盟在由四大洲国家组成的APEC中具有举足轻重的政治地位,又是由亚欧两大洲主要国家参加的亚欧会议的倡议者和发起者,在东亚乃至亚洲政治舞台上成为使日本、中国和印度等大国瞠乎其后的主角。
3、日本经济的崛起,特别是欧洲经济一体化实施的外在压力,美国、加拿大和墨西哥3国发展各自经济的内在动力,是北美自由贸易区成立的根本原因。美、加、墨3国又是山水相连的邻邦;语言文字、价值观念、风俗习惯等又颇相似;经济互补性强;相互贸易基础良好,美、加、墨3国具有实行经济一体化的必要性,又具有实行经济一体化的可能性。美国认为要取得世界经济的主导地位,只有建立以自己为中心经济区域集团,才能在经济全球化大潮中立于不败之地。
4、二十世纪七十年代后,亚太地区,特别是东亚各国和地区的对外开放经济政策和经济迅速发展为亚太区域经济合作创造了条件。东亚地区经济的发展,国际收支条件的改善,缓解亚太地区南北之间的矛盾,为亚太经济合作创造了条件。欧共体统一市场和美加自由贸易区的建立,刺激了亚太向区域经济合作的方向发展。亚太经合组织的主要活动,为各成员提供区域经济,科技,贸易和发展等方面多边合作的机会,交流各成员在这些领域内的经验,促进本区域的共同发展.它从产生、发展及运作模式均区别于欧盟和NAFTA,有自身的特点,这些特点适应了APEC各成员国经济发展的状况和经济运行模式。
课标要求:
(1)以“布雷顿森林体系”建立为例,认识第二次世界大战后以美国为主导的资本主义世界经济体系的形成。
(2)了解世界贸易组织(WTO)的由来和发展,认识它在世界经济全球化进程中的作用。了解中国参加世界贸易组织(WTO)的史实,认识其影响和作用。
(3)了解经济全球化的发展趋势,探讨经济全球化进程中的问题。
教学目标:
(1)知识与能力:了解“布雷顿森林体系”建立的基本史实,分析其影响;简述世界贸易组织(WTO)的由来和发展,认识它在世界经济全球化进程中的作用;了解中国参加世界贸易组织(WTO)的史实,认识其影响和作用;概述经济全球化的发展趋势,探讨经济全球化进程中的问题。
(2)过程与方法:阅读课文和查找中国加入世贸组织谈判的历程等,了解“从GATT到WTO”的过程,围绕世界贸易组织建立的必要性并对中国加入WTO的利与弊等问题展开讨论;开展课堂讨论或辩论:经济全球化对本地区的影响是利大于弊还是弊大于利?如何解决经济全球化出现的问题?从多角度去分析历史问题。
(3)情感、态度与价值观:通过了解经济全球化与中国加入世界贸易组织带来的机遇与挑战,树立面向世界、积极参与国际合作与竞争、促进世界和平与发展的信念和为我国社会主义现代化建设而奋斗的责任感;通过了解经济区域集团化与世界经济全球化之间的相互关系,认识现实生活中合作
高中数学必修二课件【篇4】
(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集 之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.
创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.
通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.
重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.
师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)
显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.
在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.
1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题.
长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).
(师生共同活动)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格.
我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.
角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.
度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
高中数学必修一课件精华
教案课件是老师在课堂上非常重要的课件,因此就需要我们老师写好属于自己教学课件。教案是促进学生能力全面发展的有效方式。以下是我们为大家精心准备的“高中数学必修一课件”,请将这个网站收藏以备日后需要!
高中数学必修一课件(篇1)
1、 理解课文的内容、结构、情感和主题。
2、 学习理解精彩的景物描写,以及准确生动的动作描写。
3、 探讨文中的疑难词语和问题,培养探究的习惯。
同学们,你们知道这是谁吗?有谁能给同学们介绍一下鲁迅?
作家作品简介。
①鲁迅简介 (1881~1936) :本名周树人,浙江省绍兴市人,伟大的文学家、思想家、革命家。著作有杂文、小说、散文、诗歌等,收在《鲁迅全集》里。
②《从百草园到三味书屋》选自《朝花夕拾》(原名《旧事重提》)。这组散文是在鲁迅生活中辗转流徙,心情最苦闷的时候,为了“在纷扰中寻出一点闲静来”,借旧时的美好事物,来排遣目前的苦闷,寻一点“闲静”,寄一些安慰而写的,可以说《朝花夕拾》是作者少年时代的一曲恋歌。
《朝花夕拾》包括:《狗猫鼠》、《阿长与忌胶>尽贰ⅰ抖十四孝图》、《五猖会》、《无常》《从百草园到三味书屋》、《父亲的病》、《琐记》、《藤野先生》、《范爱农》十篇散文和《〈朝花夕拾〉小引》《后记》,其中前文篇是鲁迅在北京期间写的,后五篇是在厦大期间写的。
《朝花夕拾》中的散文,形式多样,笔法灵活,抒情之中见讽刺,叙述之中显深意,严肃的内蕴常以幽默诙谐的语言出之,构成了独特的艺术风格。
①本文题为“从百草园到三味书屋”,从这个题目我们可以得到哪些信息?
文题出现两处地名“百草园”和“三味书屋”,这些都是作者童年生活、学习的场所。作者用“从……到……”的词语把它们联系在一起,从此,可以发现,课文大致分为两个部分,反映了作者由童年的游戏、玩耍到长大读书的成长过程。
②百草园和三味书屋两部分的起止各是哪里?哪一段是中间的过渡段。
1、说百草园“似乎确凿只有一些野草,但那时却是我的乐园”,这两句话有没有矛盾呢?第1自然段的作用是什么?
说百草园“似乎确凿只有一些野草,但那时却是我的乐园”没有矛盾。前一句话是用大人的眼光来看的:“确凿只有”,断定其中不会有什么动人之处;“似乎”,又对这断定有踌躇,这是表示是否记得清楚还不敢说。后一句是从小孩子的眼光来看的,作者回忆童年在百草园玩耍,一切都那么新奇有趣,确是儿童的乐园。所以不矛盾。 第一段是总说百草园是我的乐园。
2、朗读第2自然段,看作者是怎样具体描写百草园的景物的?
①形、声、色、味俱全,春、夏、秋景皆备。
②层次井然,条理分明,活泼多姿。
先用两个“不必说”从整体上写百草园,再写局部的“泥墙根一带”:由低到高写静物(菜畦-石井栏-皂荚树-桑葚),再由高到低写动物(鸣蝉-黄蜂-叫天子);整体是从植物到动物(菜畦、皂荚树、桑葚--鸣蝉、黄蜂、叫天子),局部是从动物到植物(油蛉、蟋蟀、蜈蚣、斑蝥--何首乌、木莲、覆盆子)。
从修辞手法的角度看:有比喻:(覆盆子)像小珊瑚珠攒成的小球。有拟人:油蛉在这里低唱,蟋蟀们在这里弹琴。写出孩子心中奇妙的想象和特殊的感受
④既抓住了事物的特点,又符合儿童的心理,用词贴切。
(引导学生揣摩词、句,让学生理解:光滑、肥胖、伏、窜、轻捷、低唱、弹琴等词语和相关语句。)
石井栏“光滑”表明长年累月摸,写出少年鲁迅多次好奇地摸。说黄蜂“肥胖”,不仅是它的体态较别的昆虫肥大,而且体现了儿童特别的感觉。 “直窜”写出鸟儿的机灵轻捷和儿童羡慕不已的心理。至于写油蛉“低唱”、蟋蟀“弹琴”,更是儿童特有的感受。
“不必说碧绿的菜畦,光滑的石井栏,高大的皂荚树,紫红的桑葚;也不必说鸣蝉在树叶里长吟,肥胖的黄蜂伏在菜花上,轻捷的叫天子(云雀)忽然从草间直窜向云霄里去了。单是周围的短短的泥墙根一带,就有无限趣味。”
“不必说……也不必说……单是……”中哪个内容是强调的重点?请你仿写一段话。
“单是”以后的内容是作者强调的重点。
“不必说数学12道题要做,也不必说英语20个单词得默,单是语文的一篇作文就有一个多小时的时间,您想,我得什么时候睡觉呀!”此句是说学生的家庭作业太多。由此看出这个句式的特点是形容某种事物非常之多。这一句式将儿童眼中百草园的无限趣味全都包容其中了
作者把百草园描写得有声、有色、有趣、有味,确是儿童的乐园。
1、完成第一课时补充作业。
2、在成长的过程中,一定有对你影响最深的一个人或最要好的朋友,请打开记忆之门,描述他们的音容笑貌,他们的举手投足。
1、写了百草园的景物后,又写的是什么?是一个什么样的故事?
美女蛇的故事。可让学生简要复述和评论这个故事。
2、文章为什么要写美女蛇的故事? 由赤练蛇而写到美女蛇,这是什么表现手法?能否从学过的文章中再举出一两个使用这种手法的地方?
美女蛇的故事很吸引孩子,给百草园增添了神秘色彩,丰富了百草园作为儿童乐园的情趣。
联想;《郭沫若诗两首》中《天上的街市》由地上的街灯联想到了天上的明星,再到天上的街灯和街市
3、下面一段写的是什么?
写的是冬天的百草园。
4、 冬天的百草园最有趣的是什么事?
捕鸟 。
5、文章是怎样描写捕鸟的,准确地运用了哪些动词?为什么要写捕鸟?
先写捕鸟的时间、条件、方法,然后写捕鸟的收获、经验教训。运用的动词有“扫开”、“露出”、“支起”、“撒”、“系”、“牵”、“看”、“拉”、“罩”。写捕鸟也是写百草园给爱玩的儿童带来的无穷乐趣。
6、作者写百草园是围绕哪两个字来写的,试从文章中找出来?作者对百草园是什么态度?表现了作者什么样的情感?
写百草园,始终围绕着“乐园”两个字来写--乐于观察百草园的景物(乐景),乐于听美女蛇的故事(乐闻),乐于捕鸟活动(乐事)。作者喜爱百草园。表现了儿童热爱大自然,喜欢自由快乐生活的心理。
①学生齐读过渡段。
②“我”到底知不知道被送到私塾去的原因呢?你是从哪些词语看出来的?
不知道,从“也许是……也许是……也许是……都无从知道”可以看出,三个“也许是”表示尽管猜测的原因很多,但一个也无法肯定。
③“Ade,我的蟋蟀们!Ade,我的覆盆子们和木莲们!”这句话运用什么修辞手法?表达了作者什么心理?
运用拟人,表达了“我”对百草园的依恋。
④这一段在全文结构中起什么作用?
起承上启下的过渡作用。
⑤作者对先生是什么态度?(答案不求一致,只要合理即可,要求学生能从文本中找到依据)
主要是敬慕先生,对他渊博的知识感到信服。同时也很爱他,因为学生虽然很调皮,很贪玩,但先生很少体罚他们,通常总不过是瞪瞪眼睛而已。
⑥ “他有一条戒尺。但是不常用,也有罚跪的规则,但也不常用”说明先生是一个什么样的人?
打戒尺、罚跪是私塾教育管理学生的方式。有戒尺,有罚跪规则而不常用,说明他对这种落后的教育方式持保留态度,也反映他对学生的宽容态度和开明思想。
⑦怎么理解先生不回答“怪哉”这虫的问题?(答案不求一致,只要合理就行,若学生没提出也可不讨论。)
私塾先生通常要求学生读他所指定的书,书外的问题是不予解答的,况且提问者又是一个刚入学不久的学生,如此“不务正业”,这大概是先生不作回答且有怒意的原因。
⑧你认为在三味书屋的生活有那些地方写得有趣味?
(学生自由发言,不求统一,合理就行。主要让学生理解把握课文内容。)
⑨从作者的记叙和描写中,你觉得作者对三味书屋的生活是什么样的感情?
1、完成课后研讨与练习二。
1.本文写“百草园”和“三味书屋”的两部分之间是什么关系?表现了作者怎样的思想感情?
对于这个问题,有三种不同的看法:
①两部分是对比关系,用百草园自由快乐的生活同三味书屋枯燥陈腐的生活相对比,一个是多么适合儿童心理,表现了儿童的广泛的生活乐趣,一个是多么妨碍儿童身心的发展,表现了儿童对它的厌恶。
②两部分是衬托关系,用自由欢乐的百草园生活来衬托枯燥无味的三味书屋生活,以批判封建教育制度对儿童的束缚和损害。
③两部分是和谐统一的关系,贯穿全文的,是甜美的欢乐的回忆,是对自然的爱和对知识的追求,是一颗天真调皮的童心,这是这篇散文的意境美和韵味美之所在。
2、细读课文,边读边把前后两部分联系起来思考,讨论:这篇文章表现了作者怎样的思想感情?下面三种说法可供参考。
①用百草园的自由快乐衬托三味书屋的枯燥无味,揭露和批判封建腐朽、脱离儿童实际的私塾教育。
②用百草园的自由快乐同三味书屋的枯燥无味作对比,表现了儿童热爱大自然、喜欢自由快乐生活的心理,同时对束缚儿童身心发展的封建教育表示不满。
③通过对百草园和三味书屋的回忆,表现作者儿童时代对自然的热爱,对知识的追求,以及天真、幼稚、欢乐的心理。
(这三种说法都有一定道理,学生无论赞成哪种说法,都要给予适当肯定。)
第一种说法,根据是鲁迅在不止一篇文章中批判过封建私塾教育的陈腐,扼杀儿童天性。即使在本文中,也写到私塾生活的呆板、枯燥。第二种说法,是对第一种说法的修正,比第一种说法合理些。第三种说法,最易为现在的人们接受,似乎最为合理。
你认为三味书屋的学习生活哪些方面需要改革?试谈谈你的看法。
春回大地,万物复苏,春天的校园里肯定更是一片欣欣向荣,请以“春回校园”为题写一篇小作文,要求抓住景物的特点,有顺序、有层次地进行景物描写,同时运用联想手法,写出人的活动,以展现校园里春的气息。
高中数学必修一课件(篇2)
讲义1: 空 间 几 何 体
一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、
锥体、台体、球体及简单组合体的结构特征,并
能运用这些特征描述现实生活中简单物体的结
构.
二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.
三、教学难点:柱、锥、台、球的结构特征的概括.
四、教学过程:
(一)、新课导入:
1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.
(二)、讲授新课:
1. 教学棱柱、棱锥的结构特征:
①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力
推斜后,仍然有哪些公共特征?
②、定义:有两个面互相平行,其余各面都是四边形,且
每相邻两个四边形的公共边都互相平行,由这些面所围成
的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).
结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.
③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.
表示:棱柱ABCDE-A’B’C’D’E’
④、讨论:埃及金字塔具有什么几何特征?
⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.
结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?
⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?
★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都
是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形
★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
2. 教学圆柱、圆锥的结构特征:
① 讨论:圆柱、圆锥如何形成?
② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.
→结合图形认识:底面、轴、侧面、母线、高. → 表示方法 ③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体.
④ 观察书P2若干图形,找出相应几何体;
三、巩固练习:
1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.
2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.
3.正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱.
(四)、 教学棱台与圆台的结构特征:
① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?
② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.
结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得?
③ 讨论:棱台、圆台分别具有一些什么几何性质? 22
★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.
★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.
④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索)
2.教学球体的结构特征:
① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→ 球的表示.
② 讨论:球有一些什么几何性质?
③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)
3. 教学简单组合体的结构特征:
① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?
② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.
4. 练习:圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)
(五)、巩固练习:
1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?
2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高
3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.
★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。
●解:考查其截面图,利用平行线的成比例,可得所求为9厘米。
★ 例题2:已知三棱台ABC—A′B′C′ 的上、下两底均为正三角形,边长分别为3和6,平行于底面的截面将侧棱分为1:2两部分,求截面的面积。(4)
★ 圆台的上、下度面半径分别为6和12,平行于底面的截面分高为2:1两部分,求截面的面积。(100π)
▲ 解决台体的平行于底面的截面问题,还台为锥是行之有效的一种方法。
讲义2、空间几何体的三视图和直视图
一、教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体. 掌握斜二测画法;能用斜二测
画法画空间几何体的直观图.
二、教学重点:画出三视图、识别三视图.
三、教学难点:识别三视图所表示的空间几何体.
四、教学过程:
(一)、新课导入:
1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2. 引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远
近高低各不同。不识庐山真面目,只缘身在此山中。” 对
于我们所学几何体,常用三视图和直观图来画在纸上.
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形. 用途:工程建设、机械制造、日常生活.
(二)、讲授新课:
1. 教学中心投影与平行投影:
① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上
产生影子。人们将这种自然现象加以的抽象,总结其
中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。其投影的大小随
物体与投影中心间距离的变化而变化,所以其投影不
能反映物体的实形.
③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.
→讨论:点、线、三角形在平行投影后的结果.
2. 教学柱、锥、台、球的三视图:
① 定义三视图:正视图(光线从几何体的前面向后面正投影);
侧视图(从左向右)、俯视图
② 讨论:三视图与平面图形的关系? → 画出长方体的三视图,
并讨论所反应的长、宽、高
③ 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自
左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. → 正视图、侧视图、俯视图
③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (
④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的`位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.(试变化以上的三视图,说出相应几何体的摆放)
3. 教学简单组合体的三视图:
① 画出教材P16 图(2)、(3)、(4)的
三视图.
② 从教材P16思考中三视图,说出几何体.
4. 练习:
① 画出正四棱锥的三视图.
④ 画出右图所示几何体的三视图.
③ 右图是一个物体的正视图、左视图和俯视图,
试描述该物体的形状.
(三)复习巩固
高中数学必修一课件(篇3)
函数性质
一、单调性
1.定义:一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,若都有f(x1)f(x2),那么就说函数在..区间D上单调递增,若都有f(x1)f(x2),那么就说函数在区间D上单调递减。 例1.证明fxx1在1,上单调递增 x
总结:
1)用定义证明单调性的步骤:取值----作差----变形-----定号-----判断 2)增+增=增
减+减=减
-增=减
1/增=减 3)一次函数ykxb的单调性 例1.判断函数y2.复合函数分析法
设yf(u),ug(x)x[a,b],u[m,n]都是单调函数,则yf[g(x)]在[a,b]上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减
1的增减性 x1性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表:
ug(x)
yf(u)
yf[g(x)]
增 增 减 减 增 减 增 减 增 减 减 增
例1.判断函数ylog2(x1)在定义域内的单调性
一、 函数单调性的应用 1.比较大小
例1.若f(x)在R上单调递增,且f2a1f(a3),求a的取值范围
3例2.已知函数f(x)在0,上是减函数,试比较f()与f(a2a1)的大小
42.利用单调性求最值
1例1.求函数yx1的最小值
x
x22xa1例2.已知函数f(x),x1,.当a时,求函数f(x)的最小值
x2
11例3.若函数f(x)的值域为,3,求函数g(x)f(x)的值域
2f(x)
练习:1)求函数yx21x在0,的最大值
112)若函数f(x)的值域为,3,求函数g(x)f(x)的值域
2f(x)
3.求复合函数的单调区间 1)求定义域
2)判断增减区间 3)求交集
12例1.求函数yx2x3的单调区间
2练习:求函数yx22x8的单调增区间
4.求参数取值范围
例1.函数f(x)x22ax3在区间1,2上单调,求a的取值范围
二、 奇偶性
1.判断奇偶性的前提条件:定义域关于原点对称 例1.奇函数f(x)定义域是(t,2t3),则t
. 2.奇函数的定义:对于函数f(x),其定义域D关于原点对称,如果xD,恒有f(x)f(x) ,那么函数f(x)为奇函数。
3.奇函数的性质: 1)图像关于原点对称 2)在圆点左右单调性相同
3)若0在定义域内,则必有f(0)0
1奇函数的例子:yx,yx3,yx,ysinx
x4.偶函数的定义:对于函数f(x),其定义域D关于原点对称,如果xD,恒有f(x)f(x),那么函数f(x)为偶函数。
5.偶函数的性质: 1)图像关于y轴对称 2)在圆点左右单调性相反
偶函数的例子:yx2,yx,ycosx
6.结论:奇+奇=奇,偶+偶=偶,奇奇=偶,偶偶=偶,奇偶=奇
四、常见题型: 1.函数奇偶性的判定
4x2例1.判断函数f(x)的奇偶性
x22
例2.判断f(x)(x2)
2x的奇偶性 2x2.奇偶性的应用
例1.已知f(x)x5ax3bx8,f(2)10,则f(2)_______
例2.已知f(x)是奇函数,且当x0时,f(x)x(x2),求x0时,f(x)的解析式
例3.设f(x)是偶函数,g(x)是奇函数,且f(x)g(x)
3.函数单调性与奇偶性的综合应用
例1.设偶函数f(x)在[0,)为减函数,则不等式f(x)f(2x1)的解集是 。
例2.已知函数f(x)是定义在实数集R上的函数,若f(x)在区间5,5上是奇函数,在区间0,5上是单调函数,切f(3)f(1),则( )
A. f(1)f(3) B.f(0)f(1) C.f(1)f(1) D.f(3)f(5),
例3.函数f(x)axb121,1是定义在上的奇函数,且 f()2251x1,求f(x),g(x) x11)求f(x)的解析式
2)判断函数f(x)在1,1上的单调性 3)解不等式f(t1)f(t)0
高中数学必修一课件(篇4)
《诗经》教案 学习目标: 1.了解《诗经》常识:风、雅、颂、赋、比、兴。 2.学习诗中的比兴手法及重章叠唱的章法。 3.了解《诗经》的现实主义传统,认识现实主义创作方法的特点。 4.了解古代劳动人民的生活。 [教学时间]一课时 预习检查: 了解了哪些关于《诗经》的文学常识? 文学常识介绍: 《诗经》是我国最早的诗歌总集。它收集了从西周初期至春秋中叶大约5间的诗歌305篇。先秦称为《诗》,或取其整数称《诗三百》。西汉时被尊为儒家经典,始称《诗经》,并沿用至今。《诗经》所录,均为曾经入乐的歌词。《诗经》的体例是按照音乐性质的不同来划分的,分为风、雅、颂三类。 ①风,是不同地区的地方音乐。《风》诗是从周南、召南、魏、唐、秦、陈、桧、曹、等15个地区采集上来的土风歌谣。共160篇。大部分是民歌。 ②雅,是周王朝直辖地区的音乐,即所谓正声雅乐。《雅》诗是宫廷宴享或朝会时的乐歌,按音乐的不同又分为《大雅》31篇,《小雅》74篇。 ③颂,是宗庙祭祀的舞曲歌辞,内容多是歌颂祖先功业的。 所谓《诗经》“六义”,其中风、雅、颂,是指体例分类来说的;赋、比、兴,是就表现手法而言。关于赋、比、兴,宋代朱熹做了比较确切的解释:“赋者,敷陈其事而直言之也;比者,以彼物比此物也;兴者,先言他物以引起所咏之词也。”赋、比、兴手法的成功运用,是构成《诗经》民歌浓厚风土气息的重要原因。《诗经》是中国现实主义文学的光辉起点。由于其内容丰富、思想和艺术上的高度成就,在中国以至世界文化史上都占有重要地位。它开创了中国诗歌的优秀传统,对后世文学产生了不可磨灭的影响。 《诗经・氓》 【教学目标】 1、通过本文,了解卫地的风土人情,体会男女主人公的生活经历。 2、了解课文的内容,熟悉课文中的人物和他们之间的关系。 3、透过事情的表面,挖掘人物独特的内心体验,总结人物的性格特征。 4、学习独特的语言表现手法,对照古今不同,掌握古词的'含义和不同的表现方式。 【教学时间】一课时 【教学步骤】 1、导入话题 爱情是人类永恒的话题,有人的地方,就会书写不同的爱情故事,今天,让我们走进遥远的公元前的卫国,聆听一个古老的故事,体会一下那时、那地,发生的那件事,让我们走近他们,去亲身感受一下这个传唱了千年的爱情故事。 2、范文朗读,熟悉生字词义。 氓之蚩蚩 匪我愆期 将子无怒 乘彼垣 载笑载言 尔卜尔筮 体无咎言 于嗟鸠兮 无食桑葚 隰则有泮 犹可说也 其黄而陨 自我徂尔 淇水汤汤 渐车帷裳 靡室劳矣 夙兴夜寐 言既遂矣 躬自悼矣 无与士耽 实词 布:一种货币,并非注释里说的,与现代汉语意义相同。 匪:读上声,并非通假。 将:读qiāng,愿、请,如,《将进酒》。 乘:登上。贿:财物。 说:通“脱”。 渐:读jiān,溅湿、浸湿。 爽:差错。 极:标准。 德:心意、情意。 罔:无。 虚词 以:以尔车来,以我贿迁(前“以”,用;后“以”,拿) 乘彼 垣,以望复关(表承接,无义) 秋以为期(把) 其:其黄而陨(代落叶)其叶沃若(代桑树)士贰其行(自己的) 其笑矣(语助词,无义)不思其反(你)之:主谓之间,舒缓语气,无实义 (桑之未落 桑之落矣 女之耽兮 总角之宴)静言思之(这件事) 活用 尔卜尔筮(卜、筮均为名词活用作动词,意为用龟板、蓍草占卦)士贰其行(数词活用为动词,对…不专一) 成语 二三其德、信誓旦旦、夙兴夜寐。 3、学生自行朗读,体会诗歌的感情,也可交流讨论。理清全诗层次 提问:这首叙事诗写了这对男女婚姻过程的哪几个阶段? 明确:恋爱――婚变――决绝。 追问:结婚前后,诗中男女发生了什么变化? 全诗分六章,第章十句(十个分句,可分成五个复句)。 第一、二章追述恋爱生活。女主人公“送子涉淇”,又劝氓“无怒”;“既见复关,载笑载言”,是一个热情、温柔的姑娘。 第三五章追述婚后生活。第三章,以兴起,总述自己得出的生活经验:“于嗟女兮,无与士耽!”第四章,以兴起,概说“三岁食贫”,“士也罔极,二三其德”。 第六章表示“躬自悼矣”后的感受和决心:“反是不思,亦已焉哉!” 作者顺着“恋爱―婚变―决绝”的情节线索叙事。作者通过写女主人公被遗弃的遭遇,塑造了一个勤劳、温柔、坚强的妇女形象,表现了古代妇女追求自主婚姻和幸福生活的强烈愿望。下面是全诗叙事结构和感情基调: [板书] 氓 (情节) 恋爱 婚变 决绝 (章句) 第一、二章 第三、五章 第六章 (诗句) 秋以为期 无与士耽 亦已焉战 载笑载言 士贰其行 至于暴矣 (基调) 热情、幸福 怨恨、沉痛 清醒、刚烈 男子 女子 婚前 虚伪 热情、善良、多情 婚后 凶暴、蛮横 勤劳、刚强、清醒 感情不专、薄情寡义 总结:男女的不平等,不仅体现在政治上、经济上,有时候还体现在性格上,但诗中女子的最后决绝,又使我们看到中国女子那可敬可佩的一面。
高中数学必修一课件(篇5)
本节课重在探究等比数列的前n项和公式的推导及简单的应用。教学中注重公式的形成过程及数学思想方法的渗透,并揭示公式的结构特征和内在联系.就知识的应用价值来看,它是从大量数学问题和现实问题中抽象出来的模型,在公式推导中所蕴含的数学思想方法在各种数列求和问题中有着广泛的应用.就内容的人文价值上看,它的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生数学的思考问题的良好载体.
知识与技能: 掌握等比数列的前n项和公式以及推导方法;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.
过程与方法: 经历等比数列前n 项和的推导过程,总结数列求和方法,体会数学中的思想方法.
情感态度与价值观:通过教材中的实际引例,激发学生学习数学的积极性及学习数学的主动性.
[创设情境]
[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。
高中数学必修一课件(篇6)
1、学生浏览课文,概括情节,然后由师生共同讨论回答“旁批”的提问。
2、关注阿Q对革命的态度及其变化,阿Q的革命目的,挖掘其思想根源。
①“宣统三年九月十四日--即阿Q将搭连卖给赵白眼的这一天--三更四点,有一只乌篷船到了赵府上的河埠头。”绍兴光复这么庄严的事件,作者却用阿Q卖搭连给赵白眼这件事来作补充说明,你认为作者在这里有什么用意?
提示:一方面说明普通老百姓并不关心什么绍兴光复,而只注意身边发生的小事,辛亥革命与人们的生活差得太远;表明作者对辛亥革命的态度是怀疑的,把绍兴光复与阿Q卖搭连这事联系在一起,显得滑稽可笑。
②“至于革命党,有的说是便在这一夜进了城,个个白盔白甲:穿着崇祯皇帝的素。”此句怎样理解?
提示:这说明清朝已经灭亡了,但未庄人的思想仍停留在明末清初的几百年的过去。民众之愚昧落后不言自见。
③阿Q 先是对革命党“深恶而痛绝之”,何以很快又向往革命,要“革这伙妈妈的命”?
提示:阿Q 身上有着狭隘保守排斥异端的思想,他天生反对变革现实的一切事情,所以他一开始听到革命时很反感,觉得与他为难,便“深恶痛绝”;可是他身上又有着盲目趋时的特点,加上他对现状的不满,尤其自己生活的不痛快,看到举人老爷这样怕,所以他自然又向往革命了。这表明他对革命态度的不稳定性,对革命的不理解甚至误解。
④将阿Q宣布革命后,赵太爷的“老Q”和赵白眼的“阿Q哥”与先前的“混小子”对比,揣摩一下赵太爷等人的内心世界,说说此时的赵太爷又变成了一个怎样的赵太爷?
提示:此时的赵太爷是一个惶恐狡诈卑怯的“弱势”土地主。
⑤阿Q的“白日梦”表明他革命的目的是什么?
提示:用他自己的话说就是“要什么就是什么,欢喜谁就是谁”;用我们的话来说就是金钱、权力和女人。
⑥老尼姑的“革过一革的”这五个字有何含义。
提示:表明当时“革命”一词成为人们的口头禅,但又不理解什么是革命,所以老尼姑演绎说“革过一革的”,这是对革命的绝大讽刺。所谓革命,就是假洋鬼子和秀才的打砸抢罢了。
⑦说说“这是咸与维新的时候了……也相约去革命”这句话的讽刺意味。
提示:揭示两个反动人物“革命”行动的丑恶卑劣,意味深长。也从另一个侧面揭示辛亥革命中资产阶级势力与封建势力勾结起来夺取革命果实的史实。“情投意合”“革命”含有极大的讽刺意味。
⑧阿Q与赵秀才、假洋鬼子虽“素不相能”,但都想到去静修庵“革命”,这说明什么?
提示:说明他们的革命动机都是十分低下的,无非就是找一些弱者来欺负一番,找一些封建主义的东西来革一革罢了。它让读者明白,辛亥革命之所以失败,就是这样的人太多了。
3、“革命”的阿Q对革命的认识糊涂:
封建意识:革命党便是造反,造反便是与他为难, “ 深恶而痛绝之”。
革命动机:举人老爷怕革命,未庄的男女慌张,阿Q快意。革这伙妈妈的的命
革命对象:第一个该死的是小D和赵太爷,还有秀才,还有假洋鬼子,留几条么?王胡本来还可留,但也不要了。
4、注意未庄人对革命后的阿 态度的变化。
二、学习第八章。
1、概括情节,探讨旁批的问题。
2、体会小说对比描写手法的奇妙。不准革命的阿Q为什么会这样?说明革命对于阿Q意味着什么?
阿Q轻轻的走近了,站在赵白眼的背后,心里想招呼,却不知道怎么说才好
用原文回答:洋先生不准他革命,他再没有别的路;从此决不能望有白盔白甲的人来叫他,他所有的抱负,志向,希望,前程,全被一笔勾销了
3、读读议议:
①“带兵的也还是先前的老把总”表明什么?
提示:说明“革命”换汤不换药,许多投机分子钻进革命队伍中,窃取了革命果实。
②“赵司晨脑后空荡荡的走来”,“空荡荡”用的妙在哪里?
提示:这个词把人们看惯了脑后的辫子,而现在一下子看不见辫子时不习惯的微妙感觉写出来了,很有滑稽感。
③未庄人对秀才挂“银桃子”“都惊服”,“惊服”一词有何含义?
提示:这个词刻画了未庄人前后相连的两种心态,先是猜想“银桃子”可能是当大官的象征而吃惊,过后很快便佩服,表明未庄人的趋炎附势心理。
④“我是性急的,……谁愿意在这小县城里做事情。……”假洋鬼子的这段“演讲”,满口“鬼话”,不提辛亥革命的真正功臣孙中山、黄兴等,却提一个投机分子洪哥。说说这段话刻画了假洋鬼子一副怎样的嘴脸。
提示:满口鬼话,大吹牛皮,捏造革命经历个革命资本。半吊子知识分子,外表新式,实际上是一个投机、善变、钻营的封建余孽。他的这番话只能蒙骗没见过世面的未庄乡下人。
⑤洋先生为什么不准阿Q“革命”?
提示:减洋鬼子作为一个与封建主义有着千丝万缕联系的新式资产阶级人物,注定与广大人民有着天然的隔膜,并没有丝毫共同的利益可言。尤其是,假如假洋鬼子同意了阿Q与他一起革命,那么就会认为是对自己身份的极大污辱。所以他决不准阿Q革命,决不同阿Q共一条战壕。
⑥阿Q认为洋先生不准其革命,“再没有别的路”,你认为呢?
提示:凭阿Q当时的觉悟程度,他认为自己是无路可走的,实际上他也确实是无路可走。本来可以投奔真正的革命党,但按照他的'觉悟,他不可能找到真正的革命党。
⑦赵家遭抢这两段话中用了六个“抬出了”,对于表现阿Q此时的心情有怎样的效果?
提示:强调阿Q没有被邀请革命而表现的焦虑不安的心情,更体现他革命动机的低下,那就是想分点东西。
⑧阿Q要告假洋鬼子“造反”的状,你对这一情节怎样理解?
提示:一方面参加革命不成,就要报复,这表现了他思想的狭隘;另一方面,说明阿Q的革命愿望也经不起考验,因为他对于革命的认识根本就不明确。
4、特别强调,阿Q不许小D这样与他情况相似的人革命所流露的自私狭隘思想;未庄人对自由党的“柿油党”的称法和银桃子抵翰林的认知,都显示了辛亥革命的不彻底性,百姓所有的还都是旧思想旧认知。
三、学习第九章。
1、这一章写阿Q被当作替死鬼被捕、被审和被处决,思想开掘深刻,讽刺入木三分,是作者精心打造的“大团圆”,也是编辑们着意设计“旁批”的一章。因而研读时应调动多种朗读方式去朗诵,去品读,并认真回答“旁批”所提出的每一个问题。
2、重点研讨:
①赵家遭抢了,未庄人为什么既“快意”又“恐慌”?
提示:“快意”是因为未庄人平时虽说敬畏赵太爷,但作为被压迫者,心底里还是恨赵太爷这种压迫者,所以听说赵家遭抢,自然就“快意”;“恐慌”是因为对形势不了解,怕危及自己的财产和生命。
②捉拿阿Q竟然用那么多兵,作者这样写有何用意?
③“高明”一词通常是什么意思?这里怎么解释?
提示:“高明”一般指见解、技能等的高超,这里作者是一种创造性的用法,意思是高大明亮。也就是说土谷祠并没有比大牢更好。
④阿Q在“民国”的公堂上行下跪之礼,你怎么看待这件事?
提示:阿Q的下跪,表明他身上的奴性根深蒂固。见到官就下跪,这是中国几千年封建统治者对人民驯服的结果,背后的实质是对国民人格的污辱,但国民长期如此,就像阿Q一样,觉得某人有来头,就自然下跪。作者描写这一情节,一方面是揭露统治者的愚民政策,另一方面是批评国民的奴性人格。
⑤阿Q“画圆圈”这样的细节描写,表现了阿Q什么性格?
⑥小说中前后共有几次写阿Q“睡着了”?说说其言外之意。
提示:大概有五六次,这不仅是写他生理上的睡着了,也暗写他的麻木不仁。作者忧虑国民在铁屋子里沉睡不醒,又希望他们惊醒。
⑦死到临头的阿Q,精神上还那么“泰然”,对此你有什么想法?
⑧“狼”在文中有何象征意义?
提示“狼”象征着那些麻木的看客,不仅充当看客,也充当统治者刽子手的帮凶,一起来吃掉阿Q。
⑨“他们便渐渐的都发生了遗老的气味”这句话是什么意思?
提示:万变不离其宗,顽固的封建阶级本性不变,得了“银桃子”比作“顶子”“翰林”,失了辫子如丧考妣,终于还是迷恋封建王朝的“遗老”。
⑩独写一段未庄人对阿Q被枪毙的态度来结束本文,它隐含作者的什么用意。
提示:给读者揭示一个十分悲观的现象:社会仍是如此黑暗,国民仍是如此愚昧,中国,何时才能得救?
3、旁批之外,强调阿Q三次“似乎觉得,大约本来要”怎样的心理。这样的心理其实是一种认命的宿命观,这样的想法使一切都成为自然,从而淡化了人的努力和挣扎。
4、纠正最后一个旁批概括上的不完全,理解鲁迅的意图。
四、布置作业。
概括阿Q形象,理解作者的创作意图。
高中数学必修一课件精选
学生们要想在课堂上度过一个生动有趣的时光,就必须得依靠老师艰苦卓绝的备课。如若老师还未制定教案,那就要时刻警醒了。毕竟,教案是实现教育现代化的不可或缺的手段。为了帮助您更好地指导学生,趣祝福小编根据您的要求精心整理了一本完整的“高中数学必修一课件”指南,欢迎参考本文!
高中数学必修一课件 篇1
3.数列{an}的前n项和Sn=n2-7n-8,
4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)
(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
函数关系式是f(t)=
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
一)、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)、适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三)、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
高中数学必修一课件 篇2
一、教学目标
(一)知识与技能
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观
1、感受动点轨迹的动态美、和谐美、对称美
2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气
二、教学重点与难点
教学重点:运用类比、联想的方法探究不同条件下的轨迹
教学难点:图形、文字、符号三种语言之间的过渡
三、、教学方法和手段
【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。
四、教学过程
1、创设情景,引入课题
生活中我们四处可见轨迹曲线的影子
【演示】这是美丽的城市夜景图
【演示】许多人认为天体运行的轨迹都是圆锥曲线,
研究表明,天体数目越多,轨迹种类也越多
【演示】建筑中也有许多美丽的轨迹曲线
设计意图:让学生感受数学就在我们身边,感受轨迹
曲线的动态美、和谐美、对称美,激发学习兴趣。
2、激发情感,引导探索
靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;
例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
法一:设,则
由得,
化简得
法二:设,由得
化简得
法三:设, 由点到定点的距离等于定长,
根据圆的定义得;
第三步:复习求轨迹方程的一般步骤
(1)建立适当的坐标系
(2)设动点的坐标M(x,y)
(3)列出动点相关的约束条件p(M)
(4)将其坐标化并化简,f(x,y)=0
(5)证明
其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化
设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。
3、主动发现、主动发展
由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。
第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)
设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。
第二步:分解动作,向学生提出3个问题:
问题1:当M位置不同时,线段BM与MA的大小关系如何?
问题2、体现BM与MA大小关系还有什么常见的形式?
问题3、你能类比例1把这种数量关系表达出来吗?
第三步:展示学生归纳、概括出来的数学问题
1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)
第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。
2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。
以下是学生课后探究得到的一些轨迹图形
课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?
可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。
以下是X轴和Y轴不垂直时的轨迹图形
五、教学设计说明:
(一)、教材
《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。
(二)、校情、学情
校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完
善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子
阅室,并且能随时上网。
学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基
本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲
线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号
三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,
有待加强。
(三)学法
观察、实验、交流、合作、类比、联想、归纳、总结
(四)、教学过程
1、创设情景,引入课题
2、激发情感,引导探索
由梯子滑落问题抽象、概括出数学问题
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
第三步:复习求轨迹方程的一般步骤
3、主动发现、主动发展
探究M不是中点时的轨迹
第一步:利用网络平台展示学生得到的轨迹
第二步:分解动作,向学生提出3个问题:
第三步:展示学生归纳、概括出来的数学问题
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
(五)、教学特色:
借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。
整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。
本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。
高中数学必修一课件 篇3
2.理解积累一些文言实词。
3.认识作者通过描写“世外桃源"所表达的不满黑暗现实,追求理想社会的思想感情。
教学重点:
(1)朗读、背诵文言文。 (2)理解积累一些文言实词。 (3)把握文章的叙事线索。
教学难点:
认识作者通过描写“世外桃源"所表达的不满黑暗现实,追求理想社会的思想感情。
同学们学过“世外桃源”这个成语吗?它就出自我们即将学习的课文《桃花源记》,这个成语是晋朝陶渊明在《桃花源记》一文中所描述的一个与世隔绝的,不遭战祸的安乐而美好的地方。现在我们一起跟着渔人到这个世外桃源去看看。
陶渊明生于东晋末朝,出身于没落的地主官僚家庭。他少时胸怀大志,博学能文,任性不羁。当时社会**不安,他有志不得展。做过小官,由于不满官场的丑恶,弃官回乡,这时他四十一岁,从此过着远离官场的隐居生活。
本文写于陶渊明已经五十七岁的时候,他不满黑暗的政治现实,同时由于他和农民接近,理解他们追求理想社会的愿望,所以写了这篇记和诗。
1、学生自由朗读课文,通过文中注释及工具书解决文中的生字,力求做到准确地朗读课文。
2、教师范读课文,边读边指出须注意的字词读音。
便舍(she3)船 豁(huo4)然开朗 屋舍(she4) 俨(yan3)然 阡陌(qian1mo4)
衣着(zhuo2) 黄发(fa4)垂髫(tiao2) 怡(yi2)然 要通邀读yao1意为邀请
咸(xian2) 间(jian4)隔 魏(wei4)晋 郡(jun4)下 诣(yi4) 刘子骥(ji4)
3、学生自由朗读后分男女朗读。
4、学生结合注释初步理解课文内容,准备开展理解活动。
四、我译大家评。
1、一个同学翻译一个句子,其他同学听后做评论,看翻译得好不好,若发现不足或有不同意见,可以说出自己的意见。
B、结合注释。注释中往往对一些难以理解的字词进行解释的。
C、结合上下句加以猜测。
D、增删调补。
3、翻译文言文的要求:
A、直译为主,意译为辅,凡是能够直译的,就按照原文逐字逐句对照翻译;
B、遇到古今异义、通假字、文言句式等语言现象而无法直译时,就可以灵活地或适当地采用意译的方法。
C、译文要通顺,没有语病,符合表达习惯。
为业:靠……谋生。缘:沿。夹岸:两岸。杂:别的。鲜美:鲜艳美丽。异:诧异,惊异。穷:走完。
DD东晋太元年间,(有个)武陵人靠捕鱼谋生。(有一天)他沿着小溪划船,忘了路程的远近。忽然遇到(一片)桃花林,(桃树)在溪流两岸,长达几百步,中间没有别的树。(地上)芳草鲜艳美丽,落花纷纷。渔人非常诧异。再往前划去,想走到这林子的尽头。
豁然:开通、敞亮的样子。开朗:开阔明亮。平旷:平坦开阔。 属:类。 悉:全。
DD (桃)林在溪水发源的地方就没有了,(紧接着)就是一座山,山上有个小洞口,(里面)隐隐约约有点光亮。(渔人)就下了船,从洞口进去。初进时,洞口很窄,只容一个人通过。又走了几十步,突然(变得)开阔明亮了。(这里)土地平坦开阔,房舍整整齐齐,还有肥沃的田地、美丽的池塘和桑树、竹子之类。田间小路,交错相通,(村落间)能听见鸡鸣狗叫的声音。(那里面的)人们来来往往耕田劳作,男女的穿戴,完全像桃花源外面的人。老人和小孩都充满喜悦之情,显得心满意足。
乃:于是。所从来:从哪儿来。要通邀,读yao1意为邀请。咸:都。问讯:打听消息。先世:祖先。妻子:妻子儿女。邑人:同乡人。不复出焉:不再从这里出去。焉:于之,从这里。间隔:断绝了往来。皆:都。叹惋:感叹,惋惜。延:请。语云:告诉(他)说。不足:不值得
DD(村中人)见了渔人,于是大吃一惊,问(渔人)从哪里来,(渔人)详尽地回答了他。(那人)就邀请(渔人)到自己家里去,备酒杀鸡做饭菜(款待他)。村中的人听说有这样一个人,都来打听消息。(他们)说祖先(为了)躲避秦时的战乱,带领妻子儿女及乡邻来到这与人世隔绝的.地方,不再从这里出去,于是就与外面的人断绝了往来。(他们)问起现在是什么朝代,竟然不知道有过汉朝.更不必说魏朝和晋朝了。渔人把自己听到的事详细地告诉他们,
DD(渔人)出来后,找到他的船,就沿着旧路(回去),(一路上)处处做了记号。回到郡里,去拜见太守,报告了这些情况。太守立即派人跟他前往,寻找先前做的标记,终于迷失了(方向),再也没找到原来的路。
DD南阳刘子骥,是高尚的名士;听到这件事,高兴地计划前往,没有实现,不久病死了。此后就再也没有问路探访(桃花源)的人了。
今节课我们主要的任务是疏通文中字词,初步理解课文内容。
今节课我们通过多种形式的活动来熟悉、理解课文内容为主。
二、强化朗读,熟读成诵。
三、检查学生对课文内容的理解。
学生看着课文翻译,要求不看翻译工具书,其他同学认真听,不足处请指出。(一人一段)
妻子 DD古义:妻子儿女 率妻子邑人来此绝境 今义:指男方的配偶,老婆
绝境 DD古义:与世隔绝的地方 来此绝境 今义:没有出路的地方
无论 DD古义:不要说,更不必说 无论魏晋 今义;不管(连词)
津 DD古义:渡口这里问津指探访。 后遂无问津者 今义:唾液
舍:舍弃DD 便舍船 房子DD 屋舍俨然
寻:寻找DD 寻向所志 不久DD 寻病终
志: 动词,做标记 DD处处志之 名词,标记 DD寻向所志
为:作为DD捕鱼为业 对DD不足为外人道也
向: 以前DD 寻向所志 对着DD 眈眈
缘溪行DD名词作动词,沿着。
欲穷其林DD形容词作动词,走完。
未果,寻病终DD-名词作动词,实现。
渔人甚异之DD形容词作动词,意为感到惊奇。
有几个出自本文的成语,请找出来并理解,完成练习册P63第9题第四小题。
世外桃源DD原指与现实社会隔绝、生活安乐的理想境界。后也指环境幽静生活安逸的地方。借指一种空想的脱离现实斗争的美好世界。
豁然开朗DD从黑暗狭窄变得宽敞明亮。比喻突然领悟了一个道理。
怡然自乐DD形容高兴而满足。
与世隔绝DD与社会上的人们隔离,断绝来往。形容隐居或人迹不到的极偏僻地方。
无人问津DD比喻没有人来探问、尝试或购买。
今节课我们的任务有朗读背诵、归纳字词、理解出自本文的成语。同学们回去要对课文进行创造性阅读,在阅读时要提出你质疑之处,下节课我们共同来理解。
七、作业 翻译下面文言句子。
1.阡陌交通,鸡犬相闻。
2、黄发垂髫,并怡然自乐。
3.率妻子邑人来此绝境。
4、问今是何世,不知有汉,无论魏晋。
5.此人-一为具言所闻。
上节课我们已疏通了文章意思,这节课我们一起分析文章的内容。
1、作者怎样描写桃花林的自然景色的?
DD夹岸数百步,中无杂树,芳草鲜美,落英缤纷。
2、作者怎样描写桃花源的生活环境的?
DD土地平旷,屋舍产然,有良田美池桑竹之属。阡陌交通,鸡犬相闻。
3、作者怎样描写桃花源人的热情好客的?
DD便要还家,设酒杀鸡作食。村中闻有此人,咸来问讯。余人各复延至其家,皆出酒食。
4、桃源人见渔人为什么“乃大惊”?
DD写出桃源人对陌生人的惊异,显示桃源与世隔绝的久远。
5、渔人-一为具言所闻,桃源人为什么“皆叹惋”?
DD为桃源外的世界如此**,黑暗而叹惋,为桃源外的人没有过上安定和平的生活而叹惋。
DD不希望外人来打扰这里的生活。也为下文再寻桃源不得埋下伏笔。
7、渔人出桃源时,“处处志之”,为什么再往时,“寻向所志,遂迷,不复得路”?
DD暗示桃花源是虚构的,在现实生活中是不存在的。表达了作者无可奈何的叹惋之情
8、为什么说桃花源是当时的理想社会?我们今天应当怎么评价?
DD作者虚构的世外桃源,是与作者所处的现实社会相对照的。这里景色优美,土地肥沃,资源丰富,风俗淳朴;这里没有压迫,没有战乱,社会平等,和平安宁,确实是当时乃至整个封建社会人民理想的世界。这理想在一定程度上反映了广大人民的愿望,但在当时的条件下是不可能实现的,因而它只是一种空想。
1、全文以什么作为叙事线索?
2、当时渔人是顺流划船还是逆流划船?请找出依据?
3、渔人是第一次来这里吗?请找出依据?
4、渔人忘路之远近是因为溪流鱼多,渔人忙于捕鱼,迟迟不肯收手,还是渔人一无所获,因而不甘心,仍一路撒网而去?
5、渔人再探桃花源是否言而无信?为何找不到原先做的标记?
6、桃花源的社会与渔人所生活的社会形成鲜明的对比?请从文中找出依据?
DD村人说来此绝境的原因是“避秦时乱”,说明这里是没有战乱、没有压迫的理想地方;
村人由于长时间与外界断绝来往,因此对外面的世界一无所知,以至连桃源外的朝代的更替也不知道,渔人把自己所知道的事情都告诉村人,村人听了都感叹惋惜,为桃源外的世界如此**,黑暗而叹惋,为桃源外的人没有过上安定和平的生活而叹惋同时又为自己能置身事外而感到庆幸。
四、教师小结:
陶渊明因生活在战乱频繁的环境里,因而构想了他心目中的理想社会,表达的不满黑暗现实,追求理想社会的思想感情,具有一定的积极意义
高中数学必修一课件 篇4
学习目标:1、能说出作者托石榴之物,言颂扬我们民族美好情操之志的文章主旨。
2、学习作者状物的形神兼备。
3、品位本文形象生动、准确凝练的语言。
课前学习:1、积累文中的字词,划出文中描写生动的地方。
1 创设情景导入新课:出示石榴的图片,请同学用自己的语言描绘石榴花的外型及自己的感受。导入新课。 观察、思考、交流
2 要求学生自读课文,解决生词,并尝试归纳各段段意。 自由朗读,板书生字词和各段段意。
3 指导学生准确概括段意的方法,如抓住中心句,或关键字词。 思考,作批注
5 问题设计:根据各段段意,你能理出作者的写作思路吗?(包括描写顺序) 交流、评价
1 问题创设:出示对石榴的介绍,引导学生与课文语言进行对比。教师提供语言赏析示范。 比较阅读,品味语言,根据示范作批注。 石榴,一名“安石榴”。石榴科。落叶灌木或小乔木。有针状枝,叶对生,倒卵形或长椭圆形,无毛。夏季开花,花有结实花和不结实花两种,常呈橙红色,亦有黄色或白色。
2 组织交流、评价,引导学生也要注意说明语言准确的特点。 组内交流,讨论
3 问题设计:作者为何对石榴花独有情钟?请找出文中的关键句并结合写作背景谈谈看法。在学生回答的基础上明确课文托物言志的主旨。 划出文中的关键句。补充写作背景。
1 布置任务:下面是两个寓理于物的例句,请你另选一件物品(例如“镜子”、“风筝”……),写一个既符合物品特点,又包含生活道理的句子。 练习、交流 例句: (1)蜡烛:站得不端正的,必然泪多命短。 (2)月亮:正因为有圆有缺,才使人不感到乏味。 镜子: 风筝:
高中数学必修一课件 篇5
1、积累词语,掌握“攒、拗、确凿、轻捷、相宜、方正”等词的读音,字形及词义,并学会运用。
3、走进鲁迅的童年,探索他成长的足迹,体味童真童趣。
1、学习本文写景善于抓住景物特征,层次井然、融情入景的写法,培养学生的观察能力和表达能力
2、品味作者简练生动、准确传神的语言特色,增强语感。
3、体味鲁迅在百草园和三味书屋的生活乐趣,尝试表达自己的生活经历和体验。
学习鲁迅先生从小热爱大自然、热爱自由生活、追求新鲜知识的精神。
引导学生学习课文对事物的准确描摹,对动作的准确表达及写作思路的条理性。
1、理解美女蛇故事的作用,初步了解插叙。
2、揣摩三味书屋这一部分的思想内容,理解其中一些重要的词语。
3、引导学生从整体与部分的结合上把握文章的主题思想。
教学要点:
朗读课文,整体感知文章;精读课文,理清文章的总体思路;重点研讨第一部分。体味作者在百草园中的无穷乐趣,尝试表达自己的生活经历和体验。
每个人的童年,是一片宽阔的原野,在这上面,你可以任意栽植世界上所有的花草,可以放飞所有的希望,可以播洒一生的幸福,可以荡漾一生的笑意,童年是券的,只要有一颗敏锐易感的心,童年的一切记忆都会深深留在心中。今天我们学习《从百草园到三味书屋》,了解鲁迅先生有关童年的记忆。
本文是一篇写于1926年9月18日的回忆性散文,当时鲁迅被反动派列入通缉的北京文教界五十人名单,鲁迅难以公开和反动势力进行斗争,被迫于1926年离开北京。鲁迅到厦门大学正值暑假,学生还没开学,就写下这篇散文,后来收入到《朝花夕拾》散文集中。
“朝花”喻童年美好的生活,“拾”回忆往事,原名《旧事重提》,后改为《朝花夕拾》。它是一曲少年时代生活的恋歌。
确凿(záo) 菜畦(qí) 斑蝥(wú) 攒(zǎn) 敛(liǎn) 脑髓(suǐ) 秕(bǐ)谷 蝉蜕(tuì) 书塾(shú) 宿儒(rú) 倜(tì)傥(tǎng) 窦(dòu)
第一部分(从开头到“来不及走到中间去”)写百草园的生活。
第二部分(从“出门向东”到完)写三味书屋情形。
(1)第1自然段说百草园“似乎确凿只有一些野草,但那时却是我的乐园”,这句话是否有矛盾呢?
讨论后归纳:没有矛盾,前一句是用大人的眼来看的,“确凿只有”
断是其中不会有什么动人之处,“似乎”又对这断定有踌躇,这是表示是否记得清楚还不敢说。后一句是从小孩子的眼中来看的,作者回忆童年在百草园玩耍,地切都那么新奇有趣,确定獐的乐园。所以不矛盾。
(2)作者是怎样描写百草园的景物的?
讨论后归纳:
A、从句式上看,用“不心说……也不心说……单是……”宕开一笔,为的是突出下面“单是”的内容。既然“单是”就已趣味无穷,可见园里的佳趣定然比比皆是,这是以一概全的写法。
D、从观察的角度来看:
视觉:碧绿的菜畦,光滑的石井栏,高大的皂荚树、紫红的桑葚,肥胖的黄蜂,轻捷的叫天子。
听觉:鸣蝉在树叶里长吟,油蛉在这里低唱,蟋蟀在这里弹琴。
触觉:有用手指按住它的脊梁,便 会啪的一声,从后窍喷出一阵烟雾的斑蝥,有可以牵连不断地拔起来的何乎乌的臃肿的.根。
E、从修辞手法的角度看:有比喻:覆盆子像小珊瑚攒成的小球。有拟人:油蛉在这里低唱,蟋蟀在这里弹琴。写出孩子心中奇妙的想像和特殊的感受。
F、从遣词描写来看,用词盐分准确、生动,形容黄蜂用“肥胖、伏”,形容叫天子用“轻捷、直窜”,形容石井栏用“光滑”都十分贴切。
(3)文章为什么要写美女蛇的故事?
讨论并归纳:
美女蛇的故事很吸引孩子,给百草园增添了神秘色彩,丰富了百草园作为儿童乐园的情趣。
(4)文章是怎样描写捕鸟的,准确地运用了哪些动词?为什么要写手下捕鸟?
讨论的归纳:先写捕鸟的时间,条件、方法、然后写捕鸟的收获,经验教训。运用的动词有:扫开、露出、支起、撒、系、牵、看、拉、罩。写捕鸟也是写百草园给爱玩的儿童带来的无穷乐趣。
写百草园,作者抓住了一个“乐”字来写,有乐景、乐闻、乐事。洋溢着生机和活力,情趣盎然。表现了儿童热爱大自然,喜欢自由快乐生活的心理。
1、完成研讨与练习一、1、2、,二 1,三。
(2)第7段详写的捕鸟的时间、 、 、收获、经验等,这样写的作用是 。
(4)请用原文词语组成一句话,概括下雪后在百草园只好来捕鸟的原因。
(5)第八段回忆闰土父亲关于捕鸟的答话,对答话含义理解正确的一项是( )
C、闰土父亲的话启迪我遇事要沉着冷静,这也是一种朴素的启蒙教育,所以作者难以忘怀。
1、质疑:“我”到底知不知道被送到私塾去的原因呢?你是从哪些词语看出来的?
讨论归纳:不知道,有“也许是……也许是……也许是……都无从知道”可以看出,三个“也许是”表示尽管猜测的原因很多,但一个也无法肯定。
2、质疑:“Ade,我的蟋蟀们!Ade,我的覆盆子们和木莲们!”这句话运用什么修辞手法?表达了作者什么心理?
归纳:运用了拟人,表达了“我”对百草园的依恋和私塾的反感。
3、这一段在全文结构中起什么作用?
4、作者对先生是怎样评价的?
讨论后归纳:先生很“和蔼”,是本城中极方正、质朴、博学的人。
5、怎样理解先生不回答“怪哉”这虫的问题?
讨论并归纳;私塾先生通常要求学生读他们所指定的书,书外的问题是不予解答的,况且提问者又是一个刚入学不久的学生,如此“不务正业”,这大概是先生不作回答且动怒之意的原因。这种教育思想是不可聚拢,它挫伤子学生求知的积极性。
6、“他有一条戒尺,但是不常用,也有罚跪的规则,但也不常用。”说明先生是一个什么样的人?
归纳:打戒尺、罚跪是私塾教育管理学生的方式。有戒尺,有罚跪规则而不常用,说明他对这种落后的教育方式持保留态度,也反映他对学生的开明思想。
7、三味书屋后面也有一个园,与百草园相比,哪个好玩?
讨论后明确:百草园好玩。百草园很大,这个园很小,在百草园有许多动植物,有许多好看、好听、好吃、好玩的东西,能自由自在地玩耍。而这个园只能爬上花坛去折腊梅花,寻蝉蜕,最好的工作只不过是捉了苍蝇喂蚂蚁,又必须静悄悄地没有声音,玩的伴又不能太多,时间也不能太久。
8、三味书屋里读的是什么书?作者写些教学内容有什么用意?
讨论并归纳:读书、习字、对课。读的书脱离学生实际,艰深难懂,逼着学生死记硬背,作者这样写表达他对束缚儿童身心发展的封建教育的不满。
9、怎样理解少年鲁迅背着先生画画这个问题?
讨论归纳;因为私塾只要求学生读书,不许做别的活动。画画是少年鲁迅的艺术爱好。背着先生画画,表现了少年鲁迅发展个性的强烈愿望以及对束缚儿童身心发展的封建私塾教育的不满。
1、中心思想:本文通过幼年在百草园和三味书屋生活的对比,表现了儿童热爱大自然,喜欢自由快乐生活的心理,同时,对束缚儿童身心发展的封建教育表示不满。
本文语言简练生活、准确传神,如在描写百草园的景物时使用的大量修饰词、准确、形象。在写捕鸟一节时,使用了很多准确生动的动词等。
童年是美好的,请用形象化的儿童语言说说自己快乐的童年。要求学生畅所欲言,可在小组内交流,然后选较好的发言人面向全班交流。
2、课外阅读《朝花夕拾》,思考童年生活对鲁迅成长的影响。
高中数学必修一课件 篇6
教学要点:
1、有感情地朗读课文,理解课文内容;
2、揣摩语言,学习景物描写的方法。
△从本文的题目看,你认为文章主要写了几个方面的内容△找出写百草园、三味书屋两个部分起止句中的过渡段概述一下这篇文章表现了作者怎样的思想感情。
△ 作者在百草园中的生活感受是怎样的?作者对三味书屋的感受是怎样的?二者在内容上是什么关系?有什么作用?
体验与反思:你喜欢怎样的教学内容和教学方式?你认为游戏与学习之间是矛盾的吗?
a、自由讨论。你最喜欢的语段,并说出原因(从写法上分析)b、重点研读。 朗读第二自然段、第七自然段 分析写作技巧
3、拓展延伸a、品味第二、七自然段,自己写一段话。(或写校园一角,或写某个游戏的过程)b、学生评析
教学要点: 1、有感情地朗读课文,理解文章的思路,体会至爱亲情2、研读课文
△ 从全文看,爸爸是一个怎样的人? “花”在全文结构中起着怎样的作用?文章表达了作者怎样的感情?
a、文中哪些写的是眼前事,哪些是回忆过去的事?回忆的事是怎样引出的? B、这些对“我”的成长起了怎样的作用? C、怎样理解文章未尾“我”默念的话的含义?
△ 毕业典礼后“我”回家见到了怎样的情景?这情景预示着什么呢?△“我”是不是真正感觉到自己长大了?从哪些地方看出来的?
教学内容: 1、速读课文,整体感知课文内容,体会字里行间流露的感情。2、体味文章带给我们的深刻启示。
教学设计:
△ 这篇童话讲了一个什么故事?丑小鸭遭受到哪些歧视和打击?丑小鸭是如何面对的?这篇童话给我们什么启示?
集中讨论: a、丑小鸭为什么拼死也要飞向高贵的天鹅? b、怎样理解“只要你是一只天鹅蛋,生在养鸭场里也没有什么关系”这名话? c、为什么说丑小鸭的一生是作者自身生活的写照?
教学要点:理解这两首诗,背诵《假如生活欺骗了你》;了解象征手法的作用联系自己的生活体验,谈学习体会,引导学生正确地面对生活。
课前准备: 1, 根据提示,阅读这两首诗。2, 搜集作者的有关资料。
教师组织学生将搜集到的有关资料进行课堂交流,以利于理解诗歌。
1、 反复阅读诗歌。2、独立思考,仔细品味,感悟诗歌的语言。
A“假如生活欺骗了你”指的'是什么? B诗歌的两部分各表现了怎样的内容? C这首诗歌表现了诗人怎样的人生态度?
1、 面对逆境,我们就只有耐心等待,不予抗争吗?2、怎样理解“而那过去了的,就会成为亲切的怀恋?
(五) 朗读背诵 (六)体验与反思: 教师要求学生联系自己的生活体验,谈谈学习体会,引导学生树立积极乐观的人生态度。
1、 怎样理解诗歌中所说的“路”?这是怎样一种表现手法?你能从学过的课文中找出类似的例子吗?2、四节诗歌表达了什么意思?3、这首诗到底想告诉我们什么意思?
1、 诗人选择了自己的路,可为什么题目却是“未选择的路”?2、在诗歌表现出的情趣上,《未选择的路》与《假如生活欺骗了你》有什么不同?3、这两首诗歌对人可能产生怎样的影响?
三、 课后作业 :试着写一篇随笔,评论一下《假如生活欺骗了你》或《未选择的路》。
教学要点: 熟读课文,把握课文主要内容;掌握常用文言词语,翻译课文;学习本文借事说理的方法,理解作者的思想感情。
教师范读,学生在听的过程中注意正音及句子的停顿。 学生自由诵读,进一步感知课文。 学生齐读,注意断句。
疏通文意 学生借助注释和工具书,将文言文翻译成白话文,然后四人小组讨论交流。全班同学讨论交流,解决四人小组不能解决的问题。
问题探究方仲永的变化经历了哪几个阶段?方仲永由天资过人变得“泯然众人”的原因是什么?文章最后一段议论讲了什么道理?学完本文,你有何感想?
教学要点:认识自我,正确对待成长中的烦恼。 了解他人的烦恼,重新审视并评价自我。 学会沟通与理解,能帮人解脱烦恼。
课前准备:1、提前布置预习,了解活动内容。2、学生自由结合,分为三组,选派组长。3、学生可向爸爸妈妈、朋友了解少年时期的烦恼。4、教师准备多媒体课件,美国电视剧《成长
高中数学必修一课件 篇7
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.
高中数学学习方法总结
一)、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)、适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三)、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
高中数学必修一课件 篇8
设计理念:
本文选自《宋史》,是一篇文笔凝练、较易理解的文言文,建议学生用自主合作的学习方式,借助书下注释和工具书疏通全文大意,领会文章的主旨,在了解名人事迹的过程中受到人格的熏陶,促进积极向上的价值观、人生观的形成。这也是《语文课程标准》对阅读简易文言文的要求。
教学对象分析:
本班级共有50名,其中男生27人,女生23人,全部为住读生。优生约占5%,基础较差的约占10%。从班级整体的知识情况看:他们的语文阅读能力和作文能力较差,因此,在教学的过程中必须重视学生的语文阅读能力和作文能力的培养。
教学内容分析:
本文选自《宋史》,主要写了两件事:刻苦读书和推荐人才,表现了一个中心:赵普能以天下事为已任。课文刻画人物,善于运用细节描写的方法,叙事简洁没有冗笔。
教学目标:
1、 准确翻译全文,注意重点字词,提高文言文的阅读能力。
2、 学习本文叙事简洁、运用细节描写的方法。
3、 了解更多学习刻苦、以天下事为已任的人物的故事。
4、 结合课文内容,认识赵普的勤奋学习、学以致用、为国荐材的精神。
教学重点:
1、准确翻译全文,注意重点字词,背诵全文。
2、运用细节描写人物、叙事简洁的方法。
教学过程:
一、导入:毛主席在《沁园春.雪》中称赞“秦皇汉武、唐宗宋祖、成吉思汗”是中国历史上的英雄人物,当我们在评论他们的功过得失时,我们常常发现他们的身边总有贤臣相随。同学们能从历史长廊中举出一些贤臣的例子吗?
二、学生举例,教师补充,引出赵普。
赵普,北宋大臣。后周时赵匡胤的幕僚,策划陈桥兵变,帮助赵匡胤夺取政权,后任宰相。太宗时又两次任宰相。他少时为吏,读书不多。赵普曾经对宋太宗(赵匡义)说过这么一段话:“臣平生所知,无不出此。昔以其(指《论语》)半辅太祖(赵匡胤)定天下,今欲以其半辅陛下致太平。“”
三、学生齐读课文,教师再范读全文,最后请个别学生朗读。
刻苦读书与推荐人才。
教师提醒学生注意古今异义、固定句式(“九字法”:增、删、留、换、移、固、意、直和定)
五、细读课文,思索:读完课文后你弄懂了哪些问题?(学生问答后,师出示以下参考题):
1、宋太祖劝赵普读书的原因是什么?
赵普年轻时熟悉政事的处理,而缺少学问。
2、读书给赵普带来什么好处?
在处理政务的时候能够很果断。
3、赵普晚年时“手不释卷”,请写出两到三个相关成语。
凿壁借光、囊萤读书、孜孜不倦等。
4、课文告诉我们一个什么道理?
多读书读好书能增长知识,提高能力。
5、通过文中所写的两件事,你认赵普是个怎样的人?
刚毅果断、镇定从容、能以天下事为己任、具有超人的毅力、坚强的意志。
6、本文刻画人物善于运用细节描写,试举例说明。
“阖户启箧取书”、“普颜色不变”、“补缀旧纸,复奏如初”。
六、自由朗读课文,巩固知识。
七、过渡语:古往今来,“刻苦读书”和“以天下事为已任”的人和故事层出不穷,你能试着举出一两个吗?并谈谈他们对你成长的影响。
2、完成课后习题并抄写文中自己认为好的语段。
3、收集刻苦学习的名言、名句、故事。
十、教学评价与反思:
1、由于上期在教学《幼时记趣》、《三峡》等古诗文时,我注意要求学生读准文言文的停顿、重音等知识,同时向学生讲解了古文翻译的一些基本方法,因此,
本学期在讲《赵普》一文时,学生基本能准确朗读课文的节奏,基本能回忆起文言文翻译的'一些注意事项,并运用到重点字词句的翻译中。
2、从本学期开始,我每周向学生提供一至两篇浅显的文言文,并分层进行练习,让学生培养一定的文言文阅读能力。
3、本课的教学,我改变了上期精讲全文字词的做法,实行重点突破,并利用媒体课件展示我的做法,让学生抓住重点进行学习,效果明显。
4、《语文课程标准》指出,语文课程应是开放而有活力的。初中学生性格较为叛逆,也初步具备了一定的独立辨别能力,因此,我放开话题,让学生挑战课
文,以激发他们研读文言文的兴趣。说实话,学生有几个问题我备课时没准备,让我措手不及,但因为我积极引导学生在教材的“头”上“动土”,沉闷的课堂被
激活了,学生悄悄融入语文学习的“轨道”之中。确实,课堂“动”起来了,教学也就“美”起来了!
高中数学必修一课件 篇9
1、棱柱
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱ABCDE?A'B'C'D'E' 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的.边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
'''''表示:用各顶点字母,如五棱锥P?ABCDE
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相
似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如四棱台ABCD—A'B'C'D'
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
4、圆柱
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5、圆锥
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6、圆台
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中数学必修一课件 篇10
1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的
3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行
如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
设是上的 两点,P是上_________的任意一点,则存在实数,使_______________,则为点P分有向线段所成的比,同时,称P为有向线段的定比分点
(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是,|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ
1、给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c
2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____
3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为_____
5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )
、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )
(A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+1
7、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为( )
(A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5
8、设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则 PQ=_________
9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长
10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )
11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )
(A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|
(C)(a·b)·c-(b·c)·a与b垂直 (D)(a·b)·c-(b·c)·a=0
12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )
16、利用向量证明:△ABC中,M为BC的中点,则 AB2+AC2=2(AM2+MB2)
17、在三角形ABC中, =(2,3), =(1,k),且三角形ABC的一个内角为直角,求实数k的值
18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量
高中数学必修一课件 篇11
本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。
加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的`问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。
《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,
位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。
在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”
学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。
高中数学必修一课件 篇12
(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(1)知识目标:
①要学生掌握正余弦定理的推导过程和内容;
②能够运用正余弦定理解三角形;
③了解向量知识的应用。
(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的.学习数学的兴趣。
教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。使学生的综合能力得到提高。
正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?
(2)定理的推导。
目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:
①引导学生从SinA、SinB的表达式中发现联系。
②继续引导学生观察特点,有A边A角,B边B角;
④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?
发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。
这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。
第二步证明定理:
问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破
在定理的推导过程中,我注重“重过程、重体验”培养了学生的创新意识和实践能力,教育学生独立严谨科学的求学态度,使情感目标、能力目标得以实现。
通过这样的思考题,发散了学生思维,使学生的思维不仅仅禁锢在教师的启发诱导之下,符合素质教育的要求。
(3)例题设置。
例1△ABC中,已知c=10,A=45°,C=30°,求b.
例2△ABC中,a=20,b=28,A=40°,求B和C.
例3 △ABC中,a=60,b=50,A=38°,求B和C.其中①两组解,②一组解
例3同时给出两道题,首先留给学生一定的思考时间,同时让两学生板演,以便两题形成对照、比较。
可能出现的情况:两个学生都做对,则继续为学生提供展示的空间,让学生来分析看似一样的条件,为何①二解②一解情况,如果第二同学也做出两组解,则让其他学生积极参与评判,发现问题,找出对策。
③激发学生的参与意识,培养学生合作交流、竞争的意识,使学生在相互影响中共同进步。
使学生对于已知两边和其中一边对角,三角形解的情况有一个清晰直观的认识。之后让学生对题型进行归纳小结。
这样的归纳总结是通过学生实践,在新旧知识比照之后形成的,避免了学生的被动学习,抽象记忆,让学生形成对自我的认同和对社会的责任感。实现本节课的情感目标。
(五)反馈练习:
练习①△ABC中,已知a=60,b=48,A=36°
②△ABC中,已知a=19,b=29,A=4°
③△ABC中,已知a=60,b=48,A=92°
判断解的情况。
通过学生形成性的练习,巩固了对定理的认识和应用,也便于教师掌握学情,以为教学的进行作出合理安排。
(六)课堂总结,布置作业。
高中函数课件合集
高中函数课件 篇1
一、教学目标:
了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.
二、教学重点:
利用导数判断一个函数在其定义区间内的单调性.
教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.
三、教学过程
(一)复习引入
1.增函数、减函数的定义
一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
2.函数的单调性
如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.
在单调区间上增函数的图象是上升的,减函数的图象是下降的.
例1讨论函数y=x2-4x+3的单调性.
解:取x1<x2,x1、x2∈R,取值
f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差
=(x1-x2)(x1+x2-4)变形
当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2),定号
∴y=f(x)在(-∞, 2)单调递减.判断
当2<x1<x2时,x1+x2-4>0,f(x1)<f(x2),
∴y=f(x)在(2,+∞)单调递增.综上所述y=f(x)在(-∞, 2)单调递减,y=f(x)在(2,+∞)单调递增。
能否利用导数的符号来判断函数单调性?
高中函数课件 篇2
教学目标:
1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;
2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数;
3.能够综合运用各种法则求函数的导数.
教学重点:
函数的和、差、积、商的求导法则的推导与应用.
教学过程:
一、问题情境
1.问题情境.
(1)常见函数的导数公式:(默写)
(2)求下列函数的导数:; ; .
(3)由定义求导数的基本步骤(三步法).
2.探究活动.
例1 求的导数.
思考 已知,怎样求呢?
二、建构数学
函数的和差积商的导数求导法则:
三、数学运用
练习 课本P22练习1~5题.
点评:正确运用函数的四则运算的求导法则.
四、拓展探究
点评 求导数前的变形,目的在于简化运算;如遇求多个积的导数,可以逐层分组进行;求导数后应对结果进行整理化简.
五、回顾小结
函数的和差积商的导数求导法则.
六、课外作业
1.见课本P26习题1.2第1,2,5~7题.
2.补充:已知点P(-1,1),点Q(2,4)是曲线y=x2上的两点,求与直线PQ平行的曲线y=x2的切线方程.
高中函数课件 篇3
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
(1) . 两个偶函数相加所得的和为偶函数.
(2) . 两个奇函数相加所得的和为奇函数.
(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4) . 两个偶函数相乘所得的积为偶函数.
(5) . 两个奇函数相乘所得的积为偶函数.
(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.
(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
高中函数课件 篇4
教学目标
知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。
能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。
教学重点:函数单调性的有关概念的理解
教学难点:利用函数单调性的概念判断或证明函数单调性
教具:多媒体课件、实物投影仪
教学过程:
一、创设情境,导入课题
[引例1]如图为20xx年黄石市元旦24小时内的气温变化图.观察这张气温变化图:
问题1:气温随时间的增大如何变化?
问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?
[引例2]观察二次函数
的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和y值之间的变化规律。
结论:
(1)y轴左侧:逐渐下降;y轴右侧:逐渐上升;
(2)左侧y随x的增大而减小;右侧y随x的增大而增大。
上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。
二、给出定义,剖析概念
①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值
②单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。
注意:
(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。当x1 f(x2)y随x增大而减小。几何解释:递增函数图象从左到右逐渐上升;递减函数图象从左到右逐渐下降。
(2)函数单调性是针对某一个区间而言的,是一个局部性质。
判断1:有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。
判断2:定义在R上的函数f (x)满足f (2)> f(1),则函数f (x)在R上是增函数。
函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。
训练:画出下列函数图像,并写出单调区间:
三、范例讲解,运用概念
具有任意性
例1:如图,是定义在闭区间[-5,5]上的函数出函数的单调区间,以及在每一单调区间上,函数的图象,根据图象说是增函数还减
注意:
(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。
(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。
例2:判断函数f (x) =3x+2在R上是增函数还是减函数?并证明你的结论。
分析证明中体现函数单调性的定义。
利用定义证明函数单调性的步骤。
高中函数课件 篇5
《二次函数复习》教案 仙源学校 付娟 教学目标: 知识技能: 掌握二次函数的图像及其性质,能灵活运用抛物线的性质解一些实际问题. 过程与方法: 1、通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 2、学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性. 情感态度: 经历探索二次函数相关问题的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活. 教学重点:二次函数图像及其性质,应用二次函数分析和解决简单的实际问题. 教学难点:二次函数性质的灵活运用,能把相关应用问题转化为数学问题. 教 学 过 程: 一、基础知识之自我构建 观察函数 的图像你能说出那些结论?学生抢答 填表:小组合作填写表格教师点名说结果。 二次函数的图象及性质 抛物线 开口方向 顶点坐标 对称轴 最值 a>0 a0 x y x y a”、“=”或“
高中函数课件 篇6
老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。
一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。
课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。
多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。
学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。
建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。
与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。
高中函数课件 篇7
对数函数及其性质教学设计
1.教学方法
建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.
在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导
新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。
3.教学手段
本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务.
4.教学流程
四、教学过程
教学过程
设计意图
一、创设情境,导入新课
活动1:(1)同学们有没有看过《冰河世纪》这个电影?先播放视频,引入课题。
(2)考古学家经过长期实践,发现冻土层内某微量元素的含量P与年份t的关系:,这是一个指数式,由指数与对数的关系,此指数式可改写为对数式。
(3)考古学家提取了冻土层内微量元素,确定它的残余量约占原始含量的1%,即P=0.01,代入对数式,可知
(4)由表格中的数据:
碳14的含量P
0.5
0.3
0.1
0.01
0.001
生物死亡年数t
5730
9953
19035
39069
57104
可读出精确年份为39069,当P值为0.001时,t大约为57104年,所以每一个P值都与一个t值相对应,是一一对应关系,所以p与t之间是函数关系。
(5)数学知识不但可以解决猛犸象的封存时间,也可以与其他学科的知识相结合来解决视频中的遗留问题,就是不知道咱们中国的猛犸象克隆问题会由班里的哪位同学解决,我们拭目以待。
(6)把函数模型一般化,可给出对数函数的概念。
通过这个实例激发学生学习的兴趣,使学生认识到数学来源于实践,并为实践服务。
和学生一起分析处理问题,体会函数关系,并体现学生的主体地位。
二、形成概念、获得新知
定义:一般地,我们把函数
叫做对数函数。其中x是自变量,定义域为
例1求下列函数的定义域:
(1);(2).
解:(1)函数的定义域是。
(2)函数的定义域是。
归纳:形如的的函数的定义域要考虑—
三、探究归纳、总结性质
活动1:小组合作,每个组内分别利用描点法画和的图象,组长合理分工,看哪个小组完成的最好。
选取完成最好、最快的小组,由组长在班内展示。
活动2:小组讨论,对任意的a值,对数函数图象怎么画?
教师带领学生一起举手,共同画图。
活动3:对a>1时,观察图象,你能发现图象有哪些图形特征吗?
然后由学生讨论完成下表左边:
函数的图象特征
函数的性质
图象都位于y轴的右方
定义域是
图象向上向下无限延展
值域是R
图象都经过点(1,0)
当x=1时,总有y=0
当a>1时,图象逐渐上升;
当0当a>1时,是增函数
当0通过对定义的进一步理解,培养学生思维的严密性和批判性。
通过作出具体函数图象,让学生体会由特殊到一般的研究方法。
学生可类比指数函数的研究过程,独立研究对数函数性质,从而培养学生探究归纳、分析问题、解决问题的能力。
师生一起完成表格右边,对0<a<1时,找两位同学一问一答共同完成,再次体现数形结合。
四、探究延伸
(1)探讨对数函数中的符号规律.
(2)探究底数分别为与的对数函数图像的关系.
(3)在第一象限中,探究底数分别为的对数函数图象与底数a的关系.
五、分析例题、巩固新知
例2比较下列各组数中两个值的大小:
(1),;
(2),;
(3),。
解:
(1)在上是增函数,
且3.4
(2)在上是减函数,
且3.4
(3)注:底数非常数,要分类讨论的范围.
当a>1时,在上是增函数,
且3.4
当0且3.4
练习1:比较下列两个数的大小:
练习2:比较下列两个数的大小:
(找学生上黑板讲解练习2的第一题,强调多种做法,一起完成第二小题.)
考察学生对对数函数图像的理解与掌握,进一步强调数形结合。
通过运用对数函数的单调性“比较两数的大小”培养学生运用函数的观点解决问题,逐步向学生渗透函数的思想,分类讨论的思想,提高学生的发散思维能力。
六、对比总结、深化认识
先总结本节课所学内容,由学生总结,教师补充,强调哪些是重要内容
(1)对数函数的定义;
(2)对数函数的图象与性质;
(3)对数函数的三个结论;
(4)对数函数的图象与性质的应用.
七、课后作业、巩固提高
(1)理解对数函数的图象与性质;
(2)课本74页,习题2.2中7,8;
(3)上网搜集一些运用对数函数解决的实际问题,根据今天学习的知识予以解答.
八、评价分析
坚持过程性评价和阶段性评价相结合的原则。坚持激励与批评相结合的原则.
教学过程中,评价学生的情绪、状态、积极性、自信心、合作交流的意识与独立思考的能力;
在学习互动中,评价学生思维发展的水平;
在解决问题练习和作业中,评价学生基础知识基本技能的掌握.
适时地组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用,发挥知识系统的整体优势,并为后续学习打好基础。
课后作业的设计意图:
一、巩固学生本节课所学的知识并落实教学目标;二、让不同基础的学生学到不同的技能,体现因材施教的原则;
三、使同学们体会到科学的探索永无止境,为数学的学习营造一种良好的科学氛围。
初中数学课件6篇
为了促进学生掌握上课知识点,老师需要提前准备教案,因此就需要老师自己花点时间去写。教案的编写需要贯穿综合性评价和学生反馈。编辑经过耐心地挑选给大家整理出了一篇最新的“初中数学课件”,感谢您的关注也请不要忘记收藏本文!
初中数学课件 篇1
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?
大家先观察下列式子:
(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=
他们有什么共同的特点?你可以得出什么结论?
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
初中数学课件 篇2
一、教材分析
1、教材的地位和作用
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。
2、教学目标
根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:
知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。
过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。
情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。
3、教学重点与难点
要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念初中数学说课稿精选初中数学说课稿精选。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。
二、教法、学法
因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景———数学模型—————概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
三、教学过程设计
创设情景,引入新课
因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。
初中数学说课稿三
一、教材分析
(一)地位、作用
本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的'识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。
(二)教学目标
根据学生已经有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:
1、知识与技能
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等的性质”。
(3)理解对顶角相等的说理过程。
2、过程与方法
经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力。
3、情感态度和价值观
通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
(三)重点,难点
根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:
重点:邻补角和对顶角的概念及对顶角相等的性质。
难点:写出规范的推理过程和对对顶角相等的探索。
二、教学方法
在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。
三、学法指导
让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
初中数学课件 篇3
各位评委、各位老师:
你们好!今天我要为大家讲的课题是《矩形的判定》,根据新课标理念,对应本节,我将以教什么、怎样教以及为什么这样教为思路,从教材分析、教学目标分析、教学策略分析、教学过程分析四个方面加以说明。
一、教材分析(说教材):
①教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。
②教学目标:
1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。
2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。
3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
③教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用
下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。
2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。
三、教学过程环节一:
创设情境、导入新课
通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)
回顾:
1、矩形的定义:有一个角是直角的平行四边形叫矩形
2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。
3、平行四边形的性质:
环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的'形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。
活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。
定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)
环节三:应用辨析,巩固定理
总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。
矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:
一、判断题:
1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。
二、填空题:
1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。
2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:
判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。
环节四:开放训练,发散思维
变式训练
△ABC中,点O是AC边上的一个动点,
过点O作直线MN∥BC,设MN交∠BCA的
平分线于点E,交∠BCA的外角平分线于点F。
(1)求证:EO=EF
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。
环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。
以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!
初中数学课件 篇4
本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。而再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重精讲多练,真正体现以学生为主体。上知识点复习课时采用了启发、引导式的同时,而针对学生的回答所出现的一些问题给出及时的纠正,在做练习时,这除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。
五、说教学过程
(一)复习
(1)复习什么叫分式方程?
设计意图:主要让学生区分整式方程与分式方程的区别,能够使学生能积极投入到下面环节的学习。
(2)解分式方程
①学生回忆解分式方程的基本思路和解分式方程的一般步骤,讲解例题:
解:原方程可化为:
方程两边同乘,约去分母,得
(x+3)—8x=x2—9—x(x+3)
解这个整式方程,得
检验:把x=3代入最简公分母(x+3)(x—3)=0
∴x=3是原方程的增根
∴原方程无解
设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。
②学习例题交流讨论,找两组同学到黑板上尝试解题。
设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法进一步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。
③我还设计了几个小题让同学们思考分式方程解的情况
设计意图:让学生理解在知道分式方程的根的情况下求式中字母的值
教师小结:
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根
(二)大显身手
设计意图:巩固
六、课内小结
1、这节课我们学习了什么?
2、提一个问题
初中数学课件 篇5
今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线 》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对该节课的教学设计进行说明:
一、教材分析
(一)地位、作用
该节课是在学生们已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生们的识图能力,激发学生们的学习兴趣具有推动作用,所以该节课具有很重要的地位和作用。
(二)、教学目标
根据学生们已有的知识基础,依据《教学大纲》的要求,确定该节课的教学目标为:
1、知识与技能
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等的性质”。
(3)理解对顶角相等的说理过程。
2、过程与方法
经历质疑,猜想,归纳等数学活动,培养学生们的观察,转化,说理能力和数学语言规范表达能力。
3、情感态度和价值观
通过小组讨论,培养合作精神,让学生们在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
(三)重点,难点
根据学生们已有的知识基础,依据教学大纲的要求,确定该节课的重难点为:
重点:邻补角和对顶角的概念及对顶角相等的性质。
难点:写出规范的推理过程和对对顶角相等的探索。
二、教学方法
在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生们观察、比较、归纳、总结,使学生们经历了从具体到抽象,从感性上升到理性的认识过程。
三、学法指导
让学生们学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
四、学情分析
七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。
五、教学过程
(一)创设情景,引入新课
多媒体显示立交桥、防盗网。
设问:从这些图片得出什么几何图形?学生们会指出:相交线。从而引出了课题:相交线。让学生们借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。
(二)新课探讨
1、对顶角、邻补角的位置关系。
让学生们用已备好的剪刀剪纸片、向他们提出以下问题:
问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?
学生们观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。
通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。
问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?
学生们以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生们依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的教学氛围。这样,提出问题,引导学生们分析问题,以至解决问题,体现了新型的课改精神。
2、对顶角的大小关系
学生们根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生们的猜想得于肯定,我的做法如下:
(1)我演示教具(自己制作),也给学生们操做。
(2)让学生们通过量角器测量。
(3)让学生们把画好的对顶角剪下来,进行翻折。
(4)引导学生们根据同角的补角相等来推导对顶角相等的性质。
引导他们写出推理过程后,我在黑板上板出规范的过程。学生们通过观察,比较,找出自己写的和老师写的有哪些异同点。
学生们的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生们的思考、培养学生们的逻辑思维能力以及严谨的治学态度,使学生们初步养成言之有据的习惯。
(三)让学生们举出生活中对顶角相等的例子
学生们可以通过合作性交流、思考、发表见解。
让学生们举出生活中对顶角相等的例子,使学生们进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。
(四)例题解析
例 如图,直线a, b相交, ∠1=40°,求∠2, ∠3, ∠4的度数。
学法分析:在教师的组织引导下,班级学生采用自主探究合作交流的研讨式学习方式,使班级学生真正成为学习的主人。
三、 教学过程设计
1.创设情境,提出问题 2.实验操作,模型构建 3.回归生活,应用新知
4.知识拓展,巩固深化5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 20xx年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
(2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个"数学化"的过程,从而引出下面的环节。
四、实验操作模型构建
1.等腰直角三角形(数格子)
2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于班级学生参与探索,利于培养班级学生的语言表达能力,体会数形结合的思想。
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织班级学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让班级学生的分析问题解决问题的能力在无形中得到提高。
通过以上实验归纳总结勾股定理。
设计意图:班级学生通过合作交流,归纳出勾股定理的雏形,培养班级学生抽象、概括的能力,同时发挥了班级学生的主体作用,体验了从特殊—— 一般的认知规律。
五。回归生活应用新知
让班级学生解决开头情景中的问题,前呼后应,增强班级学生学数学、用数学的意识,增加学以致用的乐趣和信心。
六、知识拓展巩固深化
基础题,情境题,探索题。
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾班级学生的个体差异,关注班级学生的个性发展。知识的运用得到升华。
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基。通过班级学生自己创设情境 ,锻炼了发散思维。
情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?
设计意图:增加班级学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和班级学生合作交流的方式,拓展班级学生的思维、发展空间想象能力。
七、感悟收获布置作业:
这节课你的收获是什么?
作业: 1、课本习题2.1 2、搜集有关勾股定理证明的资料。
板书设计 探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明::1.探索定理采用面积法,为班级学生创设一个和谐、宽松的情境,让班级学生体会数形结合及从特殊到一般的思想方法。
2.让班级学生人人参与,注重对班级学生活动的评价,一是班级学生在活动中的投入程度;二是班级学生在活动中表现出来的思维水平、表达水平。
初中数学课件 篇6
活动目的:抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。
教学效果:有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。
例2.计算:(1)3xy2÷;(2)÷
活动目的:让学生进一步理解类比的学习方法,分式的除法先转化为乘法。
教学效果:因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。
(2)“西瓜问题”
活动目的:能解决一些与分式有关的简单的实际问题。能有条理的进行表达。
教学效果:通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)
4、随堂练习。(约5分钟)76页第一题,共3个小题。
教学效果:在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
5、数学理解(约5分钟)教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。
补充例3计算(xy-x2)÷
教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。
6、课堂小结(约3分钟)先学生分组小结,在全班交流,最后老师总结。
7、作业布置,凝固新知。(约2分钟)教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
五.说板书设计:
主板书采用纲要式,一目了然。
(一)、分式的基本性质1、文字叙述2、符号表述
(二)、应用
末了,谈谈我的领会。讲堂上同等对话,让门生自主掌握数学,发明题目,实时纠正。讲授是让门生富厚了解。